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Quantum Monte Carlo with directed loops
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We introduce the concept of directed loops in stochastic series expansion and path-integral quantum Monte
Carlo methods. Using the detailed balance rules for directed loops, we show that it is possible to smoothly
connect generally applicable simulation scheffiesvhich it is necessary to include backtracking processes in
the loop constructionto more restricted loop algorithms that can be constructed only for a limited range of
Hamiltonians(where backtracking can be avoidedhe “algorithmic discontinuities” between general and
special pointgor region$ in parameter space can hence be eliminated. As a specific example, we consider the
anisotropicS=1/2 Heisenberg antiferromagnet in an external magnetic field. We show that directed-loop
simulations are very efficient for the full range of magnetic fidlzisro to the saturation pojnand anisotro-
pies. In particular, for weak fields and anisotropies, the autocorrelations are significantly reduced relative to
those of previous approaches. The back-tracking probability vanishes continuously as the isotropic Heisenberg
point is approached. For ti¢Y model, we show that back tracking can be avoided for all fields extending up
to the saturation field. The method is hence particularly efficient in this case. We use directed-loop simulations
to study the magnetization process in the two-dimensional Heisenberg model at very low temperatures. For
L XL lattices withL up to 64, we utilize the step structure in the magnetization curve to extract gaps between
different spin sectors. Finite-size scaling of the gaps gives an accurate estimate of the transverse susceptibility
in the thermodynamic limity, =0.0659+ 0.0002.
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I. INTRODUCTION thus enabling studies of system sizes much larger than what
was possible with local sampling algorithms. In addition, in
In recent years, significant advances in quantum Montesome special cases, fermionic and other sign problems can be
Carlo (QMC) algorithms have opened up several classes o€liminated with the loop-cluster algorithnj21-23.
guantum many-body models to the kind of large-scale nu- The new QMC methods have become important tools for
merical studies that were previously possible only for classiquantum many-body research in condensed matter physics
cal systems. The progress has been along two main kines: (with applications to quantum spirj84—35, bosons[36—
the elimination[1-5] of the systematic error of the Trotter 38], and one-dimensional fermion systef®9,40) as well
decomposition[6] on which most of the early finite- as in lattice gauge theofi21,22. An important property of
temperature QMC algorithmi7—11] were basedwith the  some of the loop-cluster algorithms is that they are efficient
exception of Handscomb’s methdd2-15, the utility of  a)50 in the presence of external fie[ds8,19,22,41 In par-
wh|ch was limited, and(n) the dev'elop.ment of loop-cluster ticular, the SSE algorithm with the operator-loop upda]
algorithms[16] for efficient sampling in the quantum me- pa5 proven very powerful in several recent studies of quan-
cham_cal conf|gurat|on__spac[6,4,17—19. A_Igonthms_lncor- tum spin system$33—35 and boson systemi86—39 in-
gi(t)L?atn?\ebgthc(lli)d:;: (I;)thhii\t/: Eaevirrll ddfwsedMséartmt% f(;om cluding, respectively, a magnetic field and a chemical poten-
P 9 ine Q MEnoas yal. 1t is interesting to note that in this respect QMC

operating in continuous imaginary tini8,4]) or the power . ;
series expansion of the partition functigstochastic series a_lgonth ms now perform better ‘hf"‘” clas.5|cal Monte Car!o,
since in the latter case external fields still pose challenging

expansion, hereafter SSE8], which is an extension of bl
Handscomb’s methgdWhile the Trotter error is a control- probiems.
In this paper we present a general framework for con-

lable one and can be eliminated in standard approaches by "' ' : _ -
extrapolating results for different imaginary time discretiza-Structing loop-type algorithms both in SSE and path-integral

tions to the continuurfe,20)], its absence directly at the level Methods. We focus primarily on the SSE approach, which
of the simulation can imply considerable time savings wherPWing to the manifestly discrete nature of its configuration
unbiased results are needed, e.g., in finite-size scaling stugPace is easier to implement and, for the same reason, also is
ies. The loop-cluster algorithntworld-line loops[16,17,19, more efficient in most cases. In the SSE operator-loop update
SSE operator loop§18], and world-line wormg3]) have introduced in Ref[18], a distinction was made between a
offered even more dramatic speed-ups, in many cases redugeneral algorithn{where it is necessary to allow the propa-
ing autocorrelation times by several orders of magnitude andating end of the operator path to backtraekd special
ones applicable only for certain Hamiltonia@here the
paths do not backtragkFor example, in the case of tt&
*Electronic address: sylju@nordita.dk =1/2 Heisenberg model with uniaxial anisotroftyand ex-
TElectronic address: asandvik@abo.fi ternal magnetic fieldh (also known as th&XXZ mode),
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e Vs § =1/2 Heisenberg ferromagndtl2] and antiferromagnet
H =J<iE> [SiS{+S/S/+AS Sj]—hEi S (1) [13,14 to a much wider range of systems. The performance
) is significantly improved also for the Heisenberg model
particularly efficient algorithms were devised at the isotropic27,28,43. Early attempts of such generalizatidiis] were
Heisenberg point £=1h=0) and for theXY model (A limited by the difficulties in analytically evaluating the traces
—0h=0). While the general algorithm can be used for any°f the terms of the expansion. This problem was solded]
A,h, it does not perform as well in the limitd—1h—0 by the development of a scheme for importance sampling
and A—0h—0 as the special algorithms exactly at thesealso of the individual terms of the traces expressed in a con-
points (which are the only points at which the more efficient YeNi€ntly chosen basis. The starting point of the SSE method
algorithms can be usgdHence, one should switch algo- is hence the power series expansion of the partition function:

rithms when crossing the isotropic Heisenberg axuf “ (=)
points. The presence of such “algorithmic discontinuities” is _ —BHY _ — n
clearly bothersome, both from a mathematical and practical Z=Tre "} ; ngo n! {aHa), @
point of view. Here we show how the algorithmic disconti-
nuities can be eliminated within a more general frameworkwhere the trace has been written as a sum over diagonal
of satisfying detailed balance when constructing the operatomatrix elements in a basi§|a)}. Simulation algorithms
loop. For reasons that will become clear below, we call thédbased on this expansion can be formulated without sign
entities involved in this type of update “directed loops.” problems for the same models as those for which world-line
With these, we are able to carry out simulations as efficientlynethods[9] are applicable. There are no approximations
in the limits approaching the Heisenberg axtf points as causing systematic errors, and very efficient loop-type updat-
exactly at those points. We also show that this scheme can beg algorithms have also recently been devised
easily adapted to continuous-time path integrals. [18,23,40,43 A distinct advantage of SSE over continuous-

The outline of the rest of the paper is the following: In time world-line methodd$3,4] is the discrete nature of the
Sec. Il we review the SSE method and the operator-loogonfiguration space, which can be sampled without floating
update on which the directed-loop algorithm is based. Wepoint operations.
outline a proof of detailed balance and also discuss a few Here we first review an implementation of the SSE
special cases in which back tracking can be easily avoided imethod for the anisotropiS=1/2 Heisenberg model. A
the loop construction. In Sec. Il we first discuss a moreproof of detailed balance in the operator-loop updating
general condition for satisfying detailed balance in the SSEscheme is then outlined. Several practical issues related to
method, which leads us to the directed-loop equations. Wehe operator loops are also discussed. Estimators for physical
then show in detail how this scheme is applied to fie observables will not be discussed here. Several classes of
=1/2 XXZ model. We present two solutions of the directed-expectation values have been derived in R&f. Observ-
loop equations. One is identical to the previous generi@bles of interest in the context of the Heisenberg model have
operator-loop update and the other smoothly connects to thgeen discussed in Ref42]. Off-diagonal correlation func-
special “deterministic” operator-loop algorithm at the isotro- tions (single-particle Green’s functionbave been studied in
pic Heisenberg point. We also briefly discuss the structure oRef. [44].
the directed-loop equations for a more general class of
Hamiltonians. Implementation of directed loops in the path- A. SSE configuration space
integral formalism is discussed in Sec. IV. In Sec. V we For th : ic Heisenb it
present simulation results in various parameter regions of the. or the anisotropic Heisenberg antiferromagnet, (ELQ:,.
XXZ model. We compare autocorrelation times for simula—W'th N spins it is convenient to use the standard basis
tions using the two different directed-loop solutions. We also ez 2 z

. . . . . . |a> |Sll 1"'ISN>I (3)

extract the dynamic exponent in simulations of isotropic
Heisenberg models at critical points in one, two, and threg,, ¢4 yrite the Hamiltonian in terms of bond operatds,
d|men3|qns. In _Sec. VI_, as a demons_tratlon of what can b§arep refers to a pair of site(b),j(b),
accomplished with the improved solution, we present results
for the magnetization as a function of the external field in the Ny
two-dimensional(2D) Heisenberg model at very low tem- H=-J> H, (J>0). (4)
peratures. We calculate the magnetic susceptibility using b=1
gaps between different spin sectors extracted from the ste . . ) .
structure in the magnetization curve. We conclude with a0r ad-dimensional cubic lattice, the number of boridg
summary and discussion in Sec. VII. In an Appendix We:dN. The bond operators are further decomposed into two
outline the basic elements of a simple and efficient computepPerators:
implementation of the SSE method.

Hp=H1ip—Hazp, ()
II. STOCHASTIC SERIES EXPANSION

The SSE method is a generalizatiph 2,19 of Hand- . , ,
scomb’s power series expansion method for the isotr&pic H1p=C—AS1,)Sj(byt Mol Sipy t+ Sy |- (6)

whereH, ,, is diagonal andH,), off-diagonal,
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distribution is approximatelyn)*2. M can therefore be cho-
sen so thah never reaches the cutoff during the simulation
(M~ pBN). The truncation error is then completely negli-
and we have defined the magnetic field on a bohg, gible. In practiceM is gradually adjusted during the equili-
=h/(2dJ). The constanC should be chosen such that all bration of the simulation, so thafl =an,,,,, wheren,, ., is
matrix elements oH, ), are positive, i.e.C=A/4+h,. We  the highestn reached. A practical range for the factars
will henceforth use the notation 1.2-1.5. The simulation can be started with some random
state|a) and an “empty” operator strin§0,0]4, ... [0,0]y

C=Cote, Co=Al4+hy, (®) (we sometimes use the notatipa,b], instead of a,,b,]).
Ergodic sampling of the configurationsy(S,) is accom-
plished using two different types of updates.

H :E S+ S tS, S+ 7
26=5[Si0)Sj0) T Sy Sjiny - @)

where e=0. In the Hamiltonian(4) we have neglected a
constantN,C, which should be kept in mind when calculat-
ing the energy.

The powers oH in Eg. (2) can be expressed as sums of B. Updating scheme
products of the bond operatoi®) and(7). Such a productis ~ The first update (diagonal update is of the type
conveniently referred to by an operator-index sequence [0,0],+=[1b],, involving a single diagonal operator which
changes the expansion ordeby =1 [42]. The correspond-

Sh=[a1,b1].[z,b2]. - - [an,bn]. ©) ing Metropolis acceptance probabilities are
wherea; € {1,2} corresponds to the type of operatdy, di-
agonal; 2, off-diagonalandb; € {1, . . . N} is the bond in- p([o,o]p_>[1,b]p)=NbB<a(p)|Hl'b|a(p)>, (14
dex. Hence, M-—n
- el M-n+1
= —1)m P([1b],—[0,0],)= , 15
z ; nZO ;ﬂ (1) 2n!<a |1:[1 Ha b . (10 (11.61,~10.0]p) NpB(a(p)|Hypla(p)) 13

where 8=J/T andn, is the total number of spin-flipping whereP>1 should be interpreted as probability 1. The pres-
operator§ 2,b] in S,. It is useful to define the normalized ence ofNy in these probabilities reflects the fact that there
states resulting whejw) is propagated by a fraction of the are N, random choices for the bonbd in a substitution

SSE operator string: [0,0]—[1,b] but only one way to replacé1l,b]—[0,0]
whenb is given. These diagonal updates are attempted con-
P secutively for allp=1,... M, and at the same time the
Ia(p))”iﬂl Haivbi|a>' (11) state|a) is propagated when spin-flipping operat¢&b]

are encounteredthese cannot be changed in a single-

Note that there is no branching, i.e., &t(p)) are basis operator updafeso that the statde(p)) are available when
states, anda(p)) and|a(p+1)) are either same states or needed to calculate the probabilitieist) and (15).
differ only by a flipped pair of spins. In order for a term  The purpose of the second type of update—the operator
(@,S,) to contribute to the partition function, the boundary loop[18]—is to accomplish substitutiodd b],«[2,b], for
condition|a(n))=|a(0)) has to be satisfied. On a bipartite a varying number of operators, thereby flipping spins also in
lattice n, must therefore be even, and the expansion is thegeveral of the propagated stat@4). The expansion order
positive definite. The termgconfigurationy can thus be does not change. It is then convenient to disregard Ghe
sampled using Monte Carlo techniques without sign probunit operator elements 8y and instead work with the origi-
lems. nal sequence§, of Eqg. (10), which contain only elements

To simplify the Monte Carlo sampling, it is usef{il] [1b] and[2b]. For the discussion of the operator loops, the
(although not necessaf?]) to truncate the expansion at a propagation indexy will refer to this reduced sequence. It is

maximum powern=M and to insertM —n “fill-in” unit also convenient to introduce two-spin states
operatorsHy =1 in the operator products in all possible
ways. This gives | b, (P)) =S,y (P). Sfio ) (P)) (16)

M

iﬂl Ha b defined in Eq.11). The weight factor corresponding to Eq.
(10) can then be written as

wheren is the number of bond operators, i.e., the number of

B"(M—n)!
ZZZ“ SEM—M! <a

>’ (12) i.e., the spins at bond, in the propagated stater(p)) as

elementd a; ,b;]#[0,0]. One can show thdfl,12] the aver- g" n
age expansion order W(a,S,)= mpﬂl (ap (p)[Hp |ap (P—1)),  (17)
(n)=BNy|Ey|, (13 _ _
where the nonzero two-spin matrix elements are
whereEy, is the internal energy per boné,=—(Hy) [in-
cluding the constant in Eq. (6)], and that the width of the (LIIHplL )=,
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FIG. 1. The six different vertices corresponding to the matrix
elements in Eqs(18). The horizontal bar represents the full bond
operatorH,, and the circles beneathbove represent the spin state
(solid and open circles for spih-and spini, respectively before
(after) operation with either the diagonal or off-diagonal partgf.
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(TLHpl LTy =(1T[Hp|T1) =172, (18) O 0O e o0 e e e o
(1TIHp|17)=€+2hy. FIG. 3. All four paths through two vertices where the entrance is

at the lower left leg. The arrow indicates the exit leg. The resulting

In principle, the value ok=0 is arbitrary, but in practice a updated vertices, with the spin at the entrance and exit legs flipped,
large constant is inconvenient since the average expansiame also shown. The two cases marked withXaare forbidden,
order(13) has a contributior 8N}, . In many cases the simu- since the updated vertices do not correspond to operators in the
lation performs better with a smad>0 than with e=0, Hamiltonian considered here. We refer to the four different pro-
however, as will be demonstrated in Sec. V. ker0, the  cesses asa) “bounce,” (b) “continue-straight,” (c) “switch-and-
number of allowed matrix elements is reduced from six toreverse,” andd) “switch-and-continue.”
four (if h=0) or five (if h>0). ) o ) . )

The matrix element product in the weight?) can be full ;ta_tes in(a), which |s.not sto_red in the actual smqlaﬂo_n
represented as a network ofvertices, with two spin$*(p but is mclqded here for |Ilus_,trat|ve purposes, we distinguish
~1),S(p—1) “entering” the pth vertex andS¥(p),SXp) F’em:e’t‘odgg(‘)’”:' ﬁgd °£f'd'§9°”a' Z%e_ratt(f: g’ ;"f)o dlone_
“exiting.” The six allowed vertices, corresponding to the n stor perator sequ rfé,@ used in Jlagonal up
nonzero matrix element&8), are illustrated in Fig. 1. The date. In the vertex representatidb) the two-spin states are
direction of propagatiorthere and in other illustrationss taken from the full propagated stais), and the type of the

; ; : tor(diagonal or off-diagonalis implicitly given by the
such that moving upward corresponds to increasing th perato . X
propagation index. our spin states. The bar is hence strictly redundant, but we

In order to carry out the operator-loop update, a linked Iistlgzlggte n:{altrr]i;heelgggﬁss ;Stﬁerggqr']gdgré?:ttotrze vertices rep-
of the vertices is first constructed. For each of the four Iegg To construct an operator loop, one gf the ‘Ae.rtex legs is
on each vertex there is a spin state and a link to the followinq. T
. S . : : s irst selected at random as an initial entrance leg. One of the
(in the q”ectlon of increasing) or prewogs(dwectlon (.)f . four legs belonging to the same vertex as the egtrance leg is
decreasingp) vertex leg at the same site. The periodic

boundary condition of the propagated states must be takettqen chosen as the exit from the vertex, and both the entrance

into account, i.e., the links can span acrpss0 and every gnd exit spins are flipped. Examples of h9W yertices change
leg then has, an ,outgoing and incoming litile., a bidirec- n Fhe four types of Processes are_shown in Fig. 3. The prob-
tional link). In case a spir(site) is acted upo;l only by a ability of exiting at a given leg, given the entrance leg and

single operator inS,, the corresponding two legs of that the four spin states defining the vertex, is taken proportional

; : . to that matrix element in Eq18) which corresponds to the
vertex are linked together. Otherwise, for a site acted upon o
) . vertex generated when the entrance and exit spins have been

by two or more operators, all links are between different,,. L . ;
: ) . . flipped. As an example, defining matrix elements obtained by
vertices. An example of an SSE configuration and its corre;

sponding linked vertex list is shown in Fig. 2. Clearly, in an flipping spins in a vertex as
allowed configuration, links can exist only between legs in Wi f3,f4)(p)
the same spin state. Note that in the representation with the f1f

° o =(f3S7(p), F4S[(p)[Hp|f1S7(p— 1), 12S](p— 1)),
@ o o @ (b) L I (19
e e O @ t wheref;=—1 if the spin on leg (i=1,2,3,4) is flipped and
e o o ‘e e | fi=+1 if it is not flipped, the probability of exiting at leg 2
— if the entrance is at leg 1 is given by
e O o ® O
-0 @ W(Eh)
. . . . P2,1: 4+ F+ —+ T (20)
FIG. 2. (a) An SSE configuration for a three-site system with WD) +FWECED)+W(C D) +W(Z))

three operators, shown along with all the propagated states. Here

open and solid bars indicate diagonal and off-diagonal operatorgvhere we have usetdt for 1. The reasons for this choice
respectively.(b) The linked vertex list corresponding {@. The  for the probability will be discussed in Sec. IIC. If the en-
dashed lines represent bidirectional links. trance and exit correspond to different sitdse switch-and-
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@) S (b) o2 ) 2 the vertices are visited. In order not to bias the measure-
¢ © ments, it is important thal, is fixed. One cannot, e.g., keep
S S °2 on constructing loops until the number of vertices visited
[ J o o . .
e o exceeds a predetermined number. The average size of the
e e e operator loops depends strongly on the model parameters. It

is therefore useful to record the loop sizes and periodically

FIG. 4. Two different ways in which an operator loop can close.adjust N, during the equilibration of the simulation. Typi-
The starting points of the loops i@ and (b) are the legs from  cally, we determind\, such that the average cumulative loop
which the arrows point out. Irfa) the last segment of the loop length (the number of vertices visit¢dduring one MCS is
connects the initial and final vertices, resulting in the starting SDinapproximater 2n) or 2M. In recording the loop length, we
being flipped in the final configuration. lib) the last loop segment 45 not count bounce&ince no change results in the vertex
is within the initial vertex and the starting spin is flipped twice, with ¢ \vhich the path bouncésAmong the counted steps there
the net effect of no change. Both loof@s and(b) here resultinthe s il some fraction of backtracking ones, i.e., segments of
updated vertices shown ffw). the operator loop where completed vertex updates are re-

versed. If a bounce occurs already at the first step the loop

reverse and switch-and-continue processes in Figitf®  closes immediately. With our definition, this is a completed
change in the vertex corresponds to a change of the type ddop of length 0. In order not to bias the measurements, such
the operatofdiagonal— off-diagona). The leg to which the length-0 loops also have to be counted amongNhe&om-
exit is linked is taken as the entrance to the next vertex, fronpleted loops.
which an exit is again chosen. This procedure is repeated One could also fiXN, based on a criterion involving the
until the original starting point is reachdthe loop closes  average number of leg spins which are actually flipped dur-
The mismatcheglinks connecting different spin stajesx-  ing an MCS, but recording this number is slightly more com-
isting at the original entrance and at the propagating end gflicated than just keeping track of the loop lengths. Since
the path are then *healed” and a new configuration contrib-this has to be done only during equilibration, the cost is not
uting to the partition function has been created. Note thatprohibitive, however. The exact definition ®f, and pre-
depending on the way the loop closes, the spin at the legisely what constitutes one MCS are not critical iss(ssin
from which the loop construction was started may or maythe classical Wolff cluster algorithrfé5], where the MCS
not be flipped after the full loop has been completed. Ex-can also be defined in a way analogous to what we have
amples illustrating this are given in Fig. 4. discussed heje

One of the two site-switching paths—the switch-and- The operator-loop constructiofthe operator pathis a
reverse in Fig. &) or switch-and-continue in(8)—is al-  type of random walk in a d+ 1)-dimensional spac¢al-
ways forbidden since the corresponding off-diagonal matrixhough the network of connected vertices does not necessar-
element of the Heisenberg bond operator is zero. The boundl have this dimensionality—it could effectively have a frac-
path in Fig. 3a) is always allowed since the vertex is unaf- tal dimension<d+1). One may therefore wonder whether
fected (the same spin is flipped twice, resulting in no netthe closing of the loop could become problematic, especially
change. The continue-straight path of Fig(i8 is always for large systems in three dimensions. In some cases, an
allowed if the constanté>0 so that all the diagonal matrix operator loop can indeed become very long before it closes.
elements in Eq(18) are larger than zero. K=0, atleastone In rare cases a loop may even not close during a simulation
of the diagonal matrix elements vanishes, and the continuesf practical length. The loop size distribution is always very
straight process is then forbidden in some cases. broad, however, and the nonclosing problem can simply be

If a spin in the statéx) is not acted upon by any of the circumvented by imposing a maximum length beyond which
operators inSy,, it cannot be flipped by the operator-loop the loop construction is terminated. The way we typically
update. Such “free” spins can, however, be flipped withimplement this termination is by immediately initiating a
probability 1/2 since they do not appear in the weight func-new MCS (beginning with a diagonal updatenence disre-

tion. Since the average of the number of operators By, garding all the loops that were constructed during the MCS
grows linearly withB, free spins appear frequently only at of the terminated loop. This way, we do not have to save
relatively high temperatures. actual operator path@eeded in order to undo the changes

It is convenient to define a Monte Carlo sttdCS) as a  done during the construction of the terminated lpaphich
sweep of diagonal updates at all positionsSjp where pos- would become impractical for long paths. The termination
sible, followed by the construction of the linked list in which does not violate detailed balance and hence the correct dis-
a numberN; of operator loops are constructed before map-ribution of configurations contributing t@ is maintained.
ping back to a newBy, and|a) and flipping free spins. Ob- Termination of incomplete loops does introduce a bias in
servables can be measured after every, or every few, MCSyantities that are related to the extended configuration space
(in some cases, it may even be worthwhile to record meaef unclosed paths, however, such as single-particle Green'’s
surements after every lopp functions [44]. Typically, we use a maximum loop length

The remaining question now is how many operator loops~10Q(n). For theXXZ model(in any number of dimensign
one should construct in each MCS. The operator loops arescomplete loop termination is then extremely rdexces-
typically of highly varying lengths. Each MCS should in- sively long loops can occur more frequently in other models
volve several loop updates, so that a significant fraction of40] but never seem to be a very serious problefie av-
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1 2 3 4 when the actual spin states are inserted becomes
(@) &2 e O ® O ® O
P ?T OFPT OO 5 (TLIHel 1) 21
b6 b6 b & 22 (THGLD + CTTH LT +CTHATT
* e 9 ¢ o
¥ Q T T T In (a2, the entrance and exit are at the same leg. This is a
O o b o o & SE ) bounce process which closes the loop immediately with no
e O e O ® O ® O change in the configuration. If@3 and (ad) the vertex has
changed and two links have appeared which connect legs
1 2 3 4 . . : X -
b &2 e O P e O with different spin states. We call these “link discontinui-
o e ) ) * ties.” Only configurations with no link discontinuities con-
| I tribute to Z. All configurations created during the loop con-
& @ o @ 6 @ o struction contain two link discontinuities, until the loop
. g L4 closes(which can be seen as the discontinuities annihilating
H each other There are no weight changes associated with the
S ¢ ¢ s link discontinuities—the configuration weight is still consid-
® O e © e O ® O

ered to be given by Eq17). Hence, the only weight change
FIG. 5. Two ways to look at the extended configuration spacedlises from the change in the affected vertex when the en-
generated during operator-loop construction. Examples of how th&rance and exit spins are flipped.
configuration shown iffal) is modified at the beginning of an up- The way the exit leg is chosen at the start of the operator
date in the link-discontinuity picturé) and ladder operator picture l0op corresponds to a heat-bath algorithm. The probabilities
(b) are shown. In(a) the arrow in 1 indicates the proposed starting of no changgstaying in the original subspagcer transfer to
point of the loop. In(b) a first step of flipping the two spins at this a configuration with two link discontinuities are proportional
link has already been carried dgenerating ladder operators which to the respective weights in the extended space. Once a con-
are indicated by vertices with semifilled barand the arrow indi-  figuration with two discontinuities has been creaeel., the
cates the entrance point for the following step. In b@hand(b)  first step was not a boungeve do not want to create more
configurations that can be generated out of 1 are shown in 2—4jjscontinuities(which would take us out of the extended
Link discontinuitie_s are _indicated by small horizontal linegan In space considered h@rand therefore the following updates
both cases, configuration 2 corresponds to the bounce processan only take place at the discontinuitiése end points of
which results in immediate return to the original configuration. the path, i.e., the discontinuities can be moved. Here the
same heat-bath algorithm as in the first step is used. The only
erage loop length is typically much smaller thiar}, but can  difference is that the entrance leg is not chosen at random but
in some cases be a significant fraction(o} (up to tens of is given by a link from the previous vertex. Hence, the whole
percent. process consists of a series of heat-bath steps, which satisfy
detailed balance and therefore generate configurations ac-
cording to probabilities proportional to the weight in the ex-
tended space. The subset of configurations with zero link
In the originally proposed operator-loop scheft8], the  discontinuities, which contribute @, are therefore also gen-
probability of selecting an exit leg is proportional to the cor- erated with the correct distribution. The process is ergodic
responding matrix elemerii8) when the entrance and exit because all types of vertices can be generated and the opera-
spins have been flippe@with the factor of proportionality tor path can wind around the periodic boundaries and change
chosen to give probability 1 for the sum of the four prob- both the spatial winding number and the total magnetization.
abilities), a specific example of which is written in E@O). Within a sector of fixed winding number and magnetization,
One can prove that detailed balance is satisfied in this prdocal updates which constitute a small subset of the operator
cess by considering an extended configuration space whidhops suffice to ensure ergodicif$2].
includes also the intermediate configurations generated dur- Instead of thinking about the extended configuration
ing the loop constructiorfwhich do not contribute to the space in terms of link discontinuities, one can consider the
partition function. vertices created when one of the spins in the original vertices
The detailed balance proof is illustrated by an example foof Fig. 1 is flipped. These new vertices correspond to the
a configuration with three vertices in Fig(&. In (al), the  single-spin flipping(ladde operatorsS” andS; . The loop
leg with the arrow has been selected as the initial entranceonstruction can be formulated in terms of introducing pairs
point of the operator loop. An exit leg is chosen according toof these, which are then randomly propagated until they
the probabilities discussed above. Flipping both the entranceeach the same vertex and annihilate each other. The start of
spin and the exit spin leads to a new configuration in thesuch a process is illustrated in Fig(bh using the same
extended space. In Fig(d, the three resulting configura- configuration and starting point as in Figab The differ-
tions which have nonzero probability are showria2)—(a4). ence with respect to the previous discussion is that now there
The entrance— exit paths are also indicated and the corre-are no link discontinuities. Instead, the spins at both ends of
sponding spins have been flipped. The probability of procesthe link at the selected entrance leg are flipped simulta-
(a3 corresponds to the example given in Eg0), which  neously. This introduces two ladder vertices. Here one has to

C. Detailed balance
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assign a value, to the matrix elements of the ladder opera- ® O O
tors (i.e., the new operators argS" andv,S; ). The initial
loop segment, an example of which is shown in Fign13, is
then generated only with a probability rﬁlrpf/(wlwz)],
whereW; andW, are the matrix elements corresponding to
the two vertices that are considered for replacement by lad-
der vertices. If this first Step is accepted, the next Step is FIG. 6. All allowed vertices in the deterministic Operator-loop
again to choose an exit leg. As before, the propagation of th@lgorithm in the case of the Heisenberg antiferromadagtand
path is carried out according to a heat-bath algorithm, witHerromagnet(b). Operator-loop segments starting at the lower left
probabilities proportional to the matrix element when thel!€9 aré also shown.
entrance and exit spins have been flipped. In the example,
paths(b2) and (b3) lead to closed loopéback to the space romagnet, choosing the constant0 in Egs.(18) implies
with no ladder operatoyswhereas inb4) the ladder opera- that the vertices with all spins up or all spins down vanish
tors are moved further away from each other. Note that botland the remaining four matrix elements all equal 1/2. As a
spins on the link corresponding to the exit leg are flipped atesult, the matrix element product in EGL7) is simply
every step, so that no link discontinuities appear. The proceqd/2)" and is not affected by the operator-loop update. If the
continues until the two ladder operators are on the same vebounce process is excluded, the only remaining process is
tex, which then becomes equal to one of the original bondthe switch-and-reverse shown in Fig@band the path is
operator vertices. This brings the system back into the origihence deterministic. The actual loop structure is only
nal configuration space. changed by the diagonal update. The deterministic loop pro-

The link-discontinuity and ladder operator pictures of thecess is clearly symmetric with respect to flipping or flipping
loop construction are clearly completely equivalent, althoughack the spins at all vertex legs covered by the loop, and
the probabilities associated with startifay closing the loop  hence it obeys detailed balance. For the ferromagnet, the
are different. In actual simulations it is typically more con- bounce can be excluded @= —1/4 in Eq.(6) [for the iso-
venient to use the link-discontinuities view. The ladder op-tropic ferromagnefA = — 1 and there is no minus sign in Eq.
erator picture explicitly relates the extended configuration5)], and the only remaining process is then the switch-and-
space to that of correlation functions involving these operaeontinue process shown in Fig(.
tors, but the link discontinuities can be easily related to them In the deterministic case, each vertex leg can be uniquely
as well. The issue of measuring off-diagonal correlationassigned to a loop, and the loops can be flipped indepen-
functions using the SSE operator loops has been considereléntly of each other. Instead of randomly choosing starting
in Ref. [44]. points and constructing a fixed number of loops, one can

In Sec. Il we will give a more formal and complete proof then construct all possible loops exactly once, by always
of detailed balance. We will show that the heat-bath algopicking a starting point which does not belong to a loop
rithm is not the only, and also not the most efficient, way toalready constructed. The loops should then be flipped with
satisfy detailed balance when constructing the operator loogprobability 1/2. The random decision of whether or not to
We will introduce the concept of a directed loop to form aflip can be made before the loop is constructed, but even if
general framework for loop updating schemes, both in SSkhe decision is not to flip one has to construct the whole loop
and path-integral simulations. In the SSE scheme, the diand set flags on the vertex legs visited, so that one does not
rected loop simply leads to different probabilities of choos-attempt to construct the same loop again. Loops are con-
ing among the four exits from a vertex, all other aspects oktructed this way until all & vertex legs have been visited.
the method remaining as has been discussed in this sectiofihis method of constructing all the loops is analogous to the
Before introducing the directed-loop concept, we first con-classical Swendsen-Wang multicluster methégl, whereas,
sider special cases in which the bounce process can be exs was already mentioned above, the operator-loop construc-
cluded. tion in the general nondeterministic case is more similar to
the Wolff single-cluster algorithrf45].

It should be noted that in the deterministic case an algo-
rithm including only operator updatédiagonal updates and

In the general operator-loop algorithm discussed abovdpops is not completely ergodic. In the antiferromagnet,
the probability of the bounce process is always nonzero, bestates with all spins up or down are isolated from the other
cause the vertex remains unchanged and has a nonzero vaktates since no operators can act on them. These two states
(otherwise, it would not appear in the configuration in theare important only at very high temperatures and they can
first place. In some special cases, it is possible to modify thethen be reached by also performing random flips of free
algorithm in such a way that the bounce is completely exspins. In simulations witle>0 all states can be reached even
cluded. This has very favorable effects on the simulatiorwithout such spin flips.
dynamics, since there is then no backtracking and all seg- Another special case is th§Y model [18,26 (A=0h
ments of the loop accomplish changes in the configuration.=0). In this case all matrix elements in E48) equal 1/2 if

The most important of the special cases is the isotropithe constang= 1/2. The weight is then again only dependent
Heisenberg modelX=1h=0) [18]. A very similar algo- on n and does not change in the operator-loop update. The
rithm exists for the ferromagnefd & 0) [23]. For the antifer- bounce can therefore be excluded also in this case, leaving

h W
X4
h W
Xl

D. Excluding backtracking in special cases
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two remaining allowed exits from each vertex. Although weights, Eq(17), andP(s—s") is the probability of chang-
these paths are not deterministic, one can still subdivide thimg the configuration frons to s’. While the weights are
system into loops that can be flipped independently of eaclgiven by the Hamiltonian, the probability for how to update
other. the configuration depends on the actual algorithm used.
The loop structure in the general operator-loop algorithm, The algorithm for constructing an operator loop to update
which includes bounce processes, is similar to that in then SSE configuration is quite general for any form of the
worm algorithm for continuous-time path integrdf3], al-  two-body interactionand can be extended also to multipar-
though the two methods are quite different in other respectticle interactions With the configuration mapped onto a
(the actual processes used to construct the SSE operatimked vertex list, an initial entrance vertex leg is first picked
loops and the worms are different—see Sec.)VIh the  at random among all@legs. Then an exit leg belonging to
special cases where the bounce process can be excluded, the same vertex is chosen in a probabilistic way and the spins
SSE operator loops are analogous to the world-line Igops on the entrance and exit legs are flipped with unit probability.
discretg 16] or continuoud4,19] imaginary tim¢. The close  More generally, the states at these legs are updated, with
relationships between the Euclidean path integral in continunonzero probabilities only for changes leading to vertices
ous time and the discrete representation on which the SS€orresponding to nonzero matrix elements. For simplicity,
method is based has been discussed in previous papesg here assume that the change at the exit leg is uniquely
[2,43,47 and will also be further elucidated here in Sec. IV. dictated (through conservation lawsy the change at the
entrance leggeneralization to cases where the unigqueness
ll. DIRECTED LOOPS does not hold are straightforwardThe process continues
, . using the leg linked to the exit leg as the new entrance leg.
In the operator-loop update discussed in Secs. IlB anghe process stops when the initial starting leg is reached.

IIC, detailed balance is satisfied using a heat-bath algorithrj,o probability for arriving at a new configuratisi can
for propagating the path between connected vertices. In thit?herefore be written as

section we will present a more general set of equations that

have to be satisfied for detailed balance to hold in such a

process. We will show that these equations have an infinite P(s—s')=2, P(ey)P(s,60—51,€1)

number of solutions, some of which can lead to a more effi-

cient sampling than the heat bath. We construct a particular X P(s1,61—55,85) X - - X P(s,_1,6,_1—5",€p),
solution based on the intuitive hypothe€isr which we have 29
no rigorous prodf that the probability of bouncegback
tracking should be minimized. We show that the bounce
can in fact be completely excluded in a much wider range o
parameters than at the two isolated poiféstropic XY and

He@enbe”rgiglscui?ed n SIeC.d”'D.th | sch exit the vertex ak; , which is connected to the next entrance
€ cal the entiies involved In the more general SChemeg, €1, resulting in a new configuratiog , ;. The interme-

directed loops, because the detailed balance equations th&} te configurations; belong to the extended space of con-

Wf constrU(:,[t(tth fd'rfﬁ]edt'lt%()p equ;atIO):iE:p“:I:E/ takfh ffigurations with two link discontinuities, as discussed in Sec.
Into_account the fact that the construction ot the patll oh'c ne exit legsx; do not explicitly appear in the prob-

vertices Is d|re9t|onal, .e., the proba_b|I|ty of exiting at a abilities since they are uniquely linked to the following en-
parttl)atj)l?r Ie?, rg]glven the entrance Ie?], IS not tTe same als tr}(?ance legse; ;. The sum is over all possible closed loops
probability of the reverse process. The original operator-loop , . e . . . .

update with the heat-bath probabilitiEss] discussed in the Rvhich result in the updated configuration being the particular

: ; . . configurations’. To find a convenient way of choosing the
preceding section corresponds to a particular solution of the

directed-loop equations. We stress that if another solution igrobabmtles on the right-hand side of E@3) one needs an

used, the only difference in the actual simulation with respechpressmn for the inverse process where the spin configura-

to the original scheme is a different set of probabilities for " s' Is transferred intcs. This can be written down quite
o gina . P simply by realizing that for each of the terms in EQJ)

exiting at a given vertex leg, given the entrance leg anq th(:f‘here is a corresponding term that describes the “time-

four spin states. Before we explicitly construct new solutions

in the context of theXXZ model we begin by describing fl'ek:/fsrsc?r?e Eg:‘h;/vvr\i/thé(:h contributes to the reverse probability.

more generally how the directed-loop equations arise.

hereP(ey) is the probability for choosing the vertex leg
s the initial starting point an@(s;,e;—S;+1,6+1) is the
probability given a configuratios, and the entrance legj to

A. Conditions for detailed balance P(s'—s)=>, P(ey)P(s',€0—Sn 1,61 1)

reaI;jest us first recall that the detailed balance requirement X e X P(Sy,€951,61) X P(S1,61—5,80),
(24)
P(s—s")W(s)=P(s'—s)W(s'), (22
where the sum is over theameclosed loops as in Eq23).
wheres denotes a configuration having weidh{(s), which By inserting these expressions into the detailed balance

in the SSE method is expressed as a product over vertesguation(22) we see that balance is satisfied if
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W(s))P(s;,6—Si+1,8+1)=W(Si+1)P(Sj+1,811—S a((;i%) o o

for all possible SSE configurations and entrance legs. Be- o o

cause the updates(,e;—s;.1,€; 1) changes only one par- . I
ticular vertex, all except one of the factors in the product Ofth tFItG 7% EX?“:p'e thtwt?] Ve.rt'(iﬁs ;’l\."th. directed-loop segments
vertex weights in Eq(17) factor out and cancel. Writing at transform Info each other in the fipping process.

WP(s,e—s’,x)=W(s,e,x), where we have slightly
changed the notation so théf; denotes the matrix element
corresponding to ainglevertex with its four leg states coded
ass, e is the entrance leg, andis the exit leg on the same

each other. These configurations form closed sets under the
flipping operation. It is therefore sufficient to derive the de-
tailed balance conditions, E@26), for transitions between
vertex configurations in the same set independently of other

vertex, one can formulate the detailed balance criterion Eabonfigurations
(25) as A row in any of the quadrants in Fig. 8 contains all three
W(s,11,1) =W(s',1,,15), (26) configurations which can be reached by entering a certain

vertex from a certain entrance leg. For instance, in the upper

which should be valid for all possible vertex types which canleft quadrant the entrance leg for the first row is the lower
be converted into each other by changing the states at tHeft one, for the second row, the lower right one; and for the
entrance and exit legs. This equation implies many relation§ird row, the upper right one. According to E@8), the sum

between the unknown probabilities of how to choose an exiff the weights of all possible configurations that can be
leg given a particular vertex and an entrance leg. There aréached from a certain in-leg, keeping the spin configuration
additional relations which must be satisfied. Requiring thafixed, should equal the vertex weight alone. Thus taking the

the path always continues through a vertex translates into UPper left quadrant of Fig. 8, we have for rows 1-3 from the
top,

E P(s,e—s,,X)=1, (27 W;=b;+a+b,
X

where the sum is over all legs on the vertex. We have em- W;=a+b,+c, (29)

phasized in the notatios, that the resulting spin configura-
tion depends on the exit leg. In terms of the weights Ws3=b+c+bs,

W(s,l4,l5,) this requirement translates into )
where the symbols on the left-hand sides are the vertex

weights, Eqs(18), in the spin configuration space, i.e.,
S Wis.ex=W., 28 g gs(18) p g p

" Wi=(TL[Hol 1) =(LTHpl T 1) =172,
which must be valid for all vertices and entrance legs. These
equations, Eq(28) together with the relations in Eq26),
form the directed-loop equations, the foundations of our ap-
proach to construct valid probability tables for the operator-
loop update.
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B. SSE directed loops for theXXZ model

For theXXZ model there are just three possible exits for

Lk
i

any given entrance leg as one choice always leads to a zero- b e

weight state when spins connected by the loop segment are e O e O e ©
flipped (due to violation of thee-magnetization conservation b o B e o 35 % o & o
of the mode). Figure 3 illustrates the possibilities for placing e cee o e ¢ e ceoc ¢ o
directed-loop segments for different vertices. In order for our . o 6 o0 o

updating process to satisfy detailed balance we recall that
according to Eq(26) we must relate vertices in which the

tV,VO SP'”S connected by the qup segment are flippedithe FIG. 8. Possible assignments of directed-loop segments for half
direction of the loop segment is reversed. Such related cong the gifferent combinations of vertices and entrance legs. The
figurations are illustrated in Fig. 7. Furthermore, EB8)  other half of the vertex configurations can be obtained by inter-
relates vertices with different exit legs having the same SPiRthanging up and down spirisolid and open circlgswhile keeping
configuration and entrance legs. We then make the key olihe arrows. The lines with arrows are the directed-loop segments.
servation that all possible vertex configurations can be diThe configurations are divided into four séme in each quadrant
vided into eight subsets that do not transform into each otheon flipping the spins connected by the loop segment and reversing
Half of these subsets are shown in Fig. 8, where only conthe direction of the arrow, only configurations within tisame
figurations within thesamequadrant are transformed into quadrant are transformed into each other.

£
T
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N

046701-9



OLAV F. SYLJUASEN AND ANDERS W. SANDVIK PHYSICAL REVIEW E66, 046701 (2002
equations with the additional requirement of non-negative

Wo=(LT[Hpl L T)=(T L[Hp|T[)=A/2+hy+ e, ; . . S
weights. A particular symmetric solution is that correspond-

Ws=(L[[Hp|l)=¢€, (30)  ing to the heat-bath probabilities used in the original scheme
[18], which we will henceforth refer to as solutioh It is
W,=(1T|Hp|1T)=€+2hy, given by

while those on the right are weights in the enlarged configu- a=W;W,/(W;+W,+Ws),
ration space of spins and directed-loop segments. We have
assigned equal weights to the configurations that are related
by flipping, in accordance with Eq26). The order of the
symbols on the right-hand sides of Eq29) follows the
order in the upper left quadrant of Fig. 8, so that, e.g., the
weight of the two configurations in Fig. 7 Isand the weight
of the middlemost configuration in the upper left quadrant of
Fig. 8 isb,. We useb with a subscript to denote a weight of For the primed weights\V; is replaced byw,. Clearly the
a configuration where the exit equals the entrafmmunce probabilities for choosing the exit leg are here proportional
process to the weights of the resulting bare vertices, which are ob-
As mentioned above there are in all eight sets of vertexained by flipping the two spins on the loop segment, an
configurations which close under the flipping process. Thesexample of which was given in Eq20). This solution is
sets are, in principle, independent of each other and havealid in the full parameter space of theXZ model. How-
their own equation sets. However, one can easily convincever, it generally assigns a relatively large weight to the
oneself that because of symmetry reasons there are only twapunce processes where the exit leg equals the entrance leg.
different types of sets. One of these symmetries is that oThese are ineffective in updating the configurations. In par-
permuting the two spins acted upon Hy . This implies that ticular, when the fielcth—0 and the anisotroppA—1, the
the equations derived for the set in the upper left quadrant ilbounce probability approaches 1/2. Although the method still
Fig. 8, Egs.(29), are the same as for the gabt shown that  is reasonably efficientwe are not aware of any method that
can be obtained from the upper right quadrant by interchangras been more successful for models including external
ing up- and down-spins, keeping the orientation of thefields), this is bothersome since the SSE algorithm exactly at

b:W1W3/(Wl+W2+W3),
c=W,oW5/(W;+W,+Ws,), (32

by = W2/ (W, + W, + Wj).

directed-loop segments. The other symmetry is that of imagih=0 can be formulated entirely without any bounce pro-
nary time inversion, which in the figures corresponds tocesse$18,43, as reviewed in Sec. I D, and is then consid-
switching the pairs of spins below and above the horizontakrably more efficient. The fact that the=0 scheme has no
bar representing the operatbk,. This symmetry together bounces and is completely deterministic, whereashthed

with the previous one identifies the rules for the upper leftmethod has bounce probabilities approaching 1/2, inspires us
guadrant of Fig. 8 with those of the lower right quadrant.to look for solutions where the bounce probability instead
Thus, one only has to consider two independent sets of equaanishes continuously ds— 0. This will eliminate the algo-
tions, Egs.(29) and the corresponding equations that can beithmic discontinuity of the previous approach.

derived from the lower left quadrant in Fig. 8:

For the discussion of other solutions to the directed-loop

equations(29) and (31) it is convenient to express these

W;=bj+a’+b’,
W,=a’'+bj+c’, (31
W,=b’+c’+bj.

This latter set takes the form of the $28) but with primed
symbols to denote the weights aWd, instead ofW;. There

is a further reduction in the case of zero magnetic field,
where the two equation sets become identical.

Before discussing solutions to these sets of equations it
should be stressed that the actual probabilities for selecting
the exit leg are given by dividing the weight in the extended
configuration space by the weight of the bare vertex, so that,
e.g., the probability for choosing the “bounce” process,
given that the entrance leg is the lower left one on a vertex
with weightW,, as shown in the uppermost left-hand corner
of Fig. 8, isby/W;.

It is clear that there are many solutions with only positive
weights to the above equation sets as they are underdeter-
mined; both sets have six unknowns and there are three
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TABLE I. Nonzero bounce weights and minimum valueseof
for the different parameter regions of solutiBrof the directed-loop
equations. The Roman numerals correspond to those in Fig. 9. We
have defined\*=(1+A)/2.

Bounce weights €min
[ (A™—hp)/2
I b,=hy,—A~ b=—-h,—A~ 0
1 bzzhb_A7 0
FIG. 9. “Algorithmic phase diagram” showing regions where |y b,=hy—A~ bi=hy—A* 0
var_ious bounceT weights must be nonzero. The actua_ll values of thege bi=hy—A" (A~ —hy)/2
weights are given in Table I. In the shaded region all bounc by=—h,— A~ bi=hy—A* —hy—A/2

weights can be set to zero. Other bounce weights are listed in
Table 1.

where we have explicitly inserted the expressions for thefable I shows these values for the different regions in Fig. 9,
vertex weights, Eq(30). We seek positive solutions to these along with the minimum value ot allowed. Selecting a
equations. Being underdetermined the set has many solyalue for e, the remaining weights can be obtained using
tions, so we will try to find the solutions that yield the most Egs.(33).
effective algorithms. As a general principle for finding effi- At the boundary between regions in Fig. 9, one of the
cient rules, we will attempt to minimize the bounce weightsbounce weights vanishes continuously. In particular, this
by, ....bs. The solution so obtained will be termed solution Mmeans that the rules for the Heisenberg antiferromagnet in a
B. Inspecting the equations, it is clear that there is one regiofagnetic field approaches the rules in zero fegdtinuously
in parameter space where one can avoid bounces altogeth@ghp—0. This is to be contrasted to the symmetric solution
This region is shown as the shaded region in Fig. 9. From thé, Egs.(32), where the bounce probabilities approach 1/2 as
requirement of non-negative vertex weights we already havB,—0. Hence, the algorithmic discontinuity is indeed re-
the restrictione=0. In the shaded region, the requirement ofmoved as the special deterministic solution at the isotropic
non-negative weights also in the enlarged configuratioPoint is recovered automatically with solutid® (when e
space when all the bounce weights are zero imposes an ad-0)-
ditional constraint one: e=(1—A)/4—h,/2. We have no In Sec. V, the performance of simulations using solutions
rigorous princip|e of f|nd|ng the 0ptima| value ef in gen- A and B will be quantified in terms of calculated autocorre-
eral, but as can be inferred from our simulation tegis- lation functions. It will be shown that the new solutiBrcan
sented in Sec. )/|t is often advantageous to choose a Sma”lead to autocorrelation times more than an order of magni-
but nonzero value in cases whesg,,=0. tude shorter than with solutioA. The improvements are
For the Heisenberg antiferromagnet at zero magnetic fiel@host dramatic for weak but nonzero fields and weak Ising
(A=1h=0) the deterministic algorithm constructed in Ref. anisotropies 4>1). In Sec. IV we will describe how the
[18] is recovered for the choice=0. The nonzero weights directed loops also can be adapted to simulations in the path-
are thena=a’ =1/2, while the nonzero matrix elements are integral formalism. Below we first briefly discuss the form of
W,=W,=1/2, which correspond to the switch-and-reversethe detailed balance equations for more general Hamilto-
process illustrated in Fig.(8). This is a deterministic algo- Nans.
rithm as the only probabilities different from zero are unity.
There is a subtlety here as the rati®V; is undetermined for
e=0. However, the value of this probability can be left un-
determined as the vertex with all spins down will not be The SSE operator-loop update with the heat-bath prob-
generated as a consequence of the vanishing of the weighbilities [18] has already been applied to several different
WS;. This is actually more general—whenever a probabilitysystems, including spin systems wig§® 1/2 [35], various
cannot be defined because of a zero denominator, it can mson model$36—-38, as well as the 1D extended Hubbard
left undetermined because the probability of reaching such eodel[40]. The directed-loop approach can also be easily
vertex is zero in the first place. For tixeY model A =0) at  applied to a much wider class of models than Bwe1/2
zero magnetic field the choice=1/4 gives a different set of XXZ model discussed in the preceding section, and
zero-bounce rules than that proposed in R&8], which, = minimum-bounce solutions can be expected to lead to sig-
however, also is a solution of our equatioftsut with € nificant improvements in efficiency. We here briefly outline
=1/2). It is quite remarkable that for th€Y model one can the general form of the directed-loop equations and their so-
in fact find rules with no bounces for all magnetic field lutions for a general two-body interaction.
strengths up to the saturation field. We expect this to be very When the operator-loop update is applied to models with
useful. higher spins, boson or fermion models, it is clear that the
Outside the shaded region in Fig. 9 one or more bouncsimple notion of flipping a spin in th&=1/2 XXZ model
weights must be nonzero. In these regions we will agairmust be extended to a change in the state at a vertex leg
choose the smallest possible values for the bounce weightathere the final state is one out of several possible ones.

C. General form of the directed-loop equations
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Consider as an example a spin-1 model where a loop can a;; ap; apz apy) (1 W,
change the state on a leg by one or two units of spin. This is e A Aoe A 1 W
simplified when the totab” is conserved as then these dif- 1z Tz e o —| 2 , (36)
ferent changes can be considered as mmdependentoop aj3 a3 ag as|| 1 Ws
updates. This is because changing the state on the exit leg by Ay 8y, Ay Ay \ 1 W,

two units of spin when the state on the entrance leg is ) o _
changed by one unit, or vice versa, violates $i&onserva- where the matrix on the left-hand side is a real symmetric
tion law. Thus, with such a conservation law the state changé&>4 matrix with all entries non-negative for a useful algo-
of the exit leg is uniquely determined given the state chang&thm- The magnitudes of the diagonal elements determine
at the entrance leg. For simplicity we will here consider onlythe bounce probabilities. This is the general structure of the

those cases where this uniqueness holds, although this is %i;ected—loop equations for two-site ir)teractions. There are,
- ' in general, several such sets of equations, which can be gen-
no means a necessary condition.

In order to describe the general form of the directed-loo erated one by one by changing the reference vertex and the

) ; L .~ . "ype of change at the entrance leg. The reference vertex
equations for this type of general two-site interaction it is

. h he labeli hat f h should then of course be chosen among vertices that have not
convenient to change the labeling somewnhat from that Usegy heen generated starting from another reference vertex, in
in the preceding section. To define this new labeling, we star

; i rder not to generate the same equation sets several times.
by selecting a reference vertdwhich can be any of the gome of the different sets are typically identical to each other
allowed verticesand label its weigh¥V;. We then choose an by symmetry, as in the case of tBe- 1/2 XXZ model, where
entrance leg and label this leg as leg 1, and then number thfiere are eight sets falling into two classes. In that case the
rest of the legs on this vertex 2,3, and 4. Distributing thestructure of the equations changes inte 3 forms because
weight over all possible exit legs according to E28) gives  there are only three allowed exit possibilities for each en-
trance leg. To explain this with an example in the scheme
Wi=apta,+astay, (34 Used here, we can consider the vertex with all spins down as
the reference vertex. TheW,=0 as this configuration cor-
responds to the case where the lower legs (1 and 2) are
where we have labeled the weiglats in the extended space flipped, resulting in a vertex with weight zero. This immedi-
by their entrancéi) and exit(j) legs. On changing the states ately implies that alla’s (being all non-negativewith an
at both the entrance and exit legs one arrives at a new vertedex 2 must be zero and so the result is that row 2 and
If the entrance and exit legs are the same the vertex stays th@lumn 2 is taken out resulting in ax3 matrix. In general,
same. Now label the weight of the vertex reached by exitinghere can be a large numbers ot 4 equation sets, some or
at legi asW; . Thus if the exit was on leg 2 we would label a|| of which reduce into %3 and 2x2 sets(e.g., for
that vertexW,. W, has a similar decomposition &%;, Hubbard-type electron models there are botk2 and 3
X 3 sets, but no X4 sets.
Let us consider the 83 case in greater detail and ask
Wo=a;+ at axst ag, (35  when one can do without bounces, as we saw was possible in
a region in parameter space of tBe- 1/2 XXZ model dis-
cussed in the preceding section. To do this, it is convenient to
where now the entrance is on leg 2 on the vertex whiclfirst relabel the equations so tha,=W,=W,. We then set
differs from vertex 1 by having changed the states at leg Jall the diagonal entrie&he bounce weighjgo zero and find
and 2. The weigha,; corresponds to the process where thethe region of differentW’s for which the equation set has
path enters at leg 2 and exits at leg 1. The states are changstlictly positive solutions. In this case the solution is unique
in the oppositeway to that when arriving atv, from W, as there are three equations and three unknowns and it is
and hence the process is undoing the changes and we arrigasy to see that tha's are positive only whedN;<W,
back atw,. From Eq.(26) it follows thata,;=a;,. Nowone  +W,, and hence one finds a directed-loop solution without
can asks the question of whether exiting at leg 3 or 4 yield$ounces only when this condition is satisfied.
the same vertex type when starting fraffy as it does start- Allowing bounces, it is also easy to see that one can al-
ing fromW,. The answer to this is yes, because starting fromways do with only one bounce, the one that bounces off the
W; one would change the state at leg 1 and 3 while startingertex with the largest weight. I§V; is the largest weight,
from W, one would change the states at legs 2 and 3. Bubne can seta;;=a,,=0 and az;=W;3;—W;—W,, which
W, differs fromW; only by having different states at legs 1 givesa;»=0, a;3=W,;, anda,;=W,. This means that the
and 2 and thus the state at leg Zenged twicén opposite  probability for moving between the configurations with the
directions resulting in the same configuratidhi;. The  smallest weight is zero while that of moving from the largest
weights are hence uniquely defined by this procedure, andieight configuration to the smaller ones is the ratio of the
one is guaranteed that the only vertices that are related by ttemaller weight to the larger weight and unity for the reverse
detailed balance equations are those that can be reached jprocess. The bounce probability is unity minus the probabil-
changing the state on the entrance leg together with the staiy for moving to the smaller weight configurations. A similar
on any exit leg of the reference vertex. The directed-loopanalysis can be carried out for thex4 equation sets appear-
equations can therefore be written as ing for S>1/2 spin models and soft-core boson models.
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The equation sets involving larger matrices, as encoun-
tered when dealing with interactions involving more than
two sites, can also be studied in a similar manner. It should
be pointed out, however, that there is nothing that guarantees
a priori that the operator-loop update is ergodic combi-
nation with the diagonal updatesfor any solution of the
directed-loop equations. Ergodicity requires that all allowed
vertices can be generated through a series of loop updates,
and this is typically the case with two-particle terr(e-
though one could, in principle, construct models where it is
not the case However, simple one-dimensional loops such
as those discussed here cannot always accomplish this alone
when the interaction includes more than two particles, even
in the case of relatively simple models. The SSE method has
recently been applied to axY model with a standard two-
spin interactionJ and a four-spin ternK [48]. In that par- 0 1 2 3
ticular case, an ergodic operator-loop update could be used
for |J|>0, but forJ=0 another cluster-type update had to  FIG. 10. The checkerboard breakup of the space-time for a spin
be carried out. In practice, a combination of the two updateshain with four sites with open boundary conditioks, has terms
had to be used for large€/J. acting on the links between site 0 and 1 and the link between site 2

and 3. H, acts on the link between site 1 and 2. The shaded
plaquettes show where the Hamiltonian acts.
IV. PATH-INTEGRAL FORMULATION
L

In this section we will discuss how the directed loops can _ —AsH CAsH
be applied to the path-integral Monte Carlo meth&iM) Z_{Z,} tHl (rrale” ™ o) (ons e o),
formulated in imaginary time. Such methods are known as (39

world-line methods in discref®] or continuoug3,4] imagi-

nary time. The close relationships between the SSE and PIMhere o is a shorthand for a spin configuration in t&&
representations of quantum statistical mechanics have begyasis of all sites in the chain. The sum is over all possible
explored in previous workp47,43. Here we will show that  sets of spin configurations, two complete sets of states for
also the directed-loop ideas can be almost directly translateglach time step, and the trace implies . ;=0;. This is

from SSE into the PIM formalism. called the checkerboard breakup, as one can visualize it as a
checkerboard patterfsee Fig. 1@ where all the matrix ele-
ments are pictured as shaded plaquettes. This breakup is

A. Construction of the path integral .
P g completely general and can also be used for higher-

We start by writing the partition function as dimensional lattices. Because eachtdetandH,, consists of
L individually commuting terms it suffices to consider the in-
_ —BH _ “AH teraction on one shaded plaquette only and the matrix ele-
Z=Tr{e”""} Tr{ tHl € ] ' 37 ments can easily be written down. Keeping only terms to first

order inA 7, one finds

whereA 7= B/L andL is a large integer. The Hamiltonian is _ —A7H _ —A7H _
generally a sum of noncommuting pieces, and in order to Wi=(T1]e =11l Th=Ar2,
deal with the exponential it is convenient to employ the
Suzuki-Trotter trick[6]. This involves dividing the Hamil-
tonian into several sets of terms, where all terms within a set

are commuting while the sets themselves are noncommuting. A

Because the Hamiltonian is multiplied by the small quantity Ws=(llle [L1)=1+(C~A/A—hp)AT,
A7 it is possible to split the exponential into a product of

exponentials, each having one set in the exponent. The errors W,=(11]e " 2™|11)=1+(C—A/4+hy)AT.
arising from this approximation vanish asr—0 [6,20].

Consider as an example th€XZ chain. Then the Hamil- These matrix elements differ from the matrix eleme(itd)
tonian can be divided into two sets, one involving the operain the SSE method only in that the Hamiltonian is multiplied
tors that act on sitesr2 and 2n+1, while the other set by the factorA r and the diagonal matrix elements also come
involves the operators acting on sites21 and 21+ 2. Itis  with the zeroth-order term of the exponential. The welght
then possible to insert complete sets of states, which can l®mes with a minus sign, which here is omitted by implicitly
chosen to be written in terms & components, between all performing as rotation about thes* axis for spins on one
the exponentials and the partition function can be writtensublattice. This can be done whenever the lattice is bipartite.
[7-1Q as One can of course also calculate the matrix eleméd@s

w2=m|e‘““|u>=<u|e‘““|u>=1+(C+A/4>A(§é)
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the loops should be flipped with unit probability and instead
chooses weights such that the flipping probability is maxi-
mized, it is possible to find rules that work very well at
extreme field419]. However, this success at extreme fields
must be regarded as a lucky circumstance and is not gener-
ally valid for lower fields. Yet another and perhaps the sim-
plest loop method in the presence of a magnetic field is to
construct the loops as if the field was absent and then include
FIG. 11. Loop and spin configurations which should have thea Metropolis decision whenever attempting to flip a loop that
same weight when allowing the loops to be flipped independentlychanges the magnetization. This method is, however, very
ineffective [44] [except at extremely weak fields)/J

exactly, but since we will take the continuum limit here, it is =1/(8N) [25]] as is to be expected, as it does not take into

sufficient to go to linear order it 7, where the similarity to  2ccount the actual physics of the model which is the compe-
the SSE expressions are most evident tition between the magnetic field and the exchange energy.

In the ordinary world-line loop algorithnifor a review None of the above methods for treating external fields has

) roven as useful in practice as the SSE operator-loop algo-
see Refl49]), wo loop segments are assigned to each an(ﬁ hm [18]. The worm algorithm for path-integral simulations

every shaded plaquette in a stochastic way. The shadei continuous imaginary timg3] shares some important fea-
plaguettes are corner sharing so that when all shade?M

: i res with the SSE operator loogspecifically, there is an
plaquettes have been assigned segments one can identify, g to the backtracking featirand has also been used

closed loops. Given that the probabilistic rules for the aSSignéuccessfuIIy. However, its autocorrelation times seem to be
ment of loop segments for each shaded plaquette follows thg,,ch |ongeras can be seen in comparing our results in Sec.
analogy of Egs(26) and(28), one can flip a loop with any v/ with those presented in Ref41]). We will discuss differ-
probability. In particular, one can pick a random site and &nces between the procedures used to construct directed
random imaginary time and flip the loop that includes thisjoops and worms in Sec. VII. Because the directed loops are
point with unit probability. One can also turn this around anda further improvement of the SSE approach, it is natural to
first, before any loop is constructed, pick a random point ininvestigate if these concepts can also be implemented in the
space-time and then construct the loop starting at this poingath-integral formulation.
and flipping spins with unit probability as the loop is being
constructed.

When assigning loop segments to each shaded plaquette B. Directed loops in the PIM

one needs two loop segments for each plaquette in order to To implement the notion of directed loops in the path-
fill the lattice completely. Then many configurations can beintegral formulation we note the similarities of the vertices in
reached, as one should be able to independently flip spintie SSE and the shaded plaquettes in the PIM. We can iden-
along one or both the loop segments. Thus one gets relativeljfy a corner of a shaded plaquette with a vertex leg in the
many constraints of the typ@6). This is illustrated in Fig. SSE. Both have a spin attached, and each cofiegy is
11. In fact, in zero field there are just as many equations asonnected to another cornefleg) on another shaded
unknowns, and this set has only non-negative solutions in thplaquette (verteX. To construct a directed loop, we first
XY-like case,—1=<A=<1. In a magnetic field there is one choose a random entrance corner at a random shaded
additional equation and the set does not have any solutionplaquette. Then, depending on the spin configuration, we
Within the standard loop algorithm this is repaired by intro-choose an exit corner and place a directed-loop segment be-
ducing additional processes which “freeze” loops togethertween the entrance corner and the exit corner. The spins con-
i.e., if spins on one loop are flipped, spins on any loop frozemected by the loop segment are flipped with unit probability.
together with the first one will also be flipped. This increasesThe spin on the exit corner is then the entrance spin of the
the number of unknowns in the equation set, making a solunext shaded plaquette and the process continues until the
tion possible. While we are not aware of any systematic studioop closes. In contrast to the usual loop algorithm there is
ies of the effects of the freezing process, it tends to freeze allo notion of freezing loops, but there is the necesgaty
loops together, resulting in the trivial spin update where allleast in some regimggrocess of bouncing, where the “loop
spins are flipped. It is therefore not very effective. Howeverhead” backtracks some distance along its path and reverses
in the extreme Ising limit the freezing is responsible for thespin flips.
fact that the loop algorithm becomes equivalent to the Because of the relation between the SSE vertices and the
Swendsen-Wang algorithm, and hence the freezing of loopshaded plaquettes, and the similarity of the matrix elements
has some merits. (30) and(39), one can immediately write down the detailed
Another method to make the loop algorithm work in a balance equations for the PIM using Fig. 8 and interpreting
magnetic field is to apply the field in thedirection, thereby the vertices as shaded plaquettes. As in the SSE, there are
changing the matrix elements and introducing a minus signeight sets of directed-loop equations which are reduced to
Using the concept of merons, the resulting sign problem caitwo by symmetries. Substituting the plaquette weights and
be solved[21,27), but the simulation algorithm is not very expressing the extended configuration weights in terms of
efficient for large systems. If one relaxes the condition thathe bounce weights, we get
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1+A h, —by—b,+bsy B p
a=|——+ - |A7+ —F—,
4 2 2
T T
1-A hy —byt+b,~bs L L | i i T 1 K
=\ — A +—1 -~ TO TO
4 2 2 0 0
0 1 2 3 0 1 2 3
1 hy b;—b,—b, ) . . . .
c=1+|C——— A _ FIG. 12. Left: Continuous imaginary time construction of a
4 2 2 loop. This figure can be understood as the lihit—0 of Fig. 10,
) , ) dotted (solid) lines correspond to spin dowfup). Starting at an
,[1+A hy —b;—Dby+by arbitrary site and timdindicated by the arroya probability of
a = 4 2 T 2 ' (40) “decay” dependent on the spin states of the neighbors is calculated,

and the loop head is moved to the point of decay. Right: A resulting
1-A h —b/+b.—b! a' decay at a timery where the segment up to the decay has
b 1 2 3 ; H H
b’ _( ) T+f’ changed orientation and a new arrow is placed.
in a random direction. In Fig. 12 the starting point and di-
b;—b;—bs rection is marked by an arrow. From the arrow at timeto
2 : the timer,, the spin configuration on site 1 and its neighbors
0 and 2 stay unchanged. At timeg there is a spin-flip pro-
Non-negative weights are required to avoid sign problemscess exchanging the spins on sites 1 and 2. This means that
This implies that there are regions where bounces must bealf of the 2r/Ar, 7= 7, — 75, shaded plaquettdthe factor
nonzero. In fact the same algorithmic phase diagram a2 is from the fact that there are two neighbdbgtween the
shown in Fig. 9 applies here, with the exception that in thisstarting pointry and 7, are of the typeW,, while the other
case there are no restrictions @rnior e=C—A/4—hy) as it  half is of the typeWs. The loop head will therefore enter
always occurs multiplied byd7 in a combination where alternately the lower left corner on shaded plaquettes having
there also is the zeroth-order term of the exponential. In factweight W, and the lower right corner on shaded;
in the construction of the loops in continuous imaginaryplaquettes. On exiting the shad®éd, plaquette, one of the
time, where only quantities to ordérr matter, the value of three processes’, b;, or ¢’ can happen, while for each of
C drops out completely as we will consideatios where it the W5 plaquettes, one of the proces¢es, or b; can hap-
turns out thaC does not occur to ordex7. Thus in contrast pen. Thec andc’ processes are by far the most probable as
to the SSE, there is nothing gained by adjustdgn the they are of order unity while the others are of order.
path-integral representation. Whenever in a region of paramrherefore until one of the other processes of orfleroc-
eter space where bounces are needed, one can choose th@iis, the loop head will just continue its motion in the up-
to be the minimum values as summarized in Table |, with theyard direction on site 1. The probability for the first occur-
only modification that the bounce weights should be multi-rence of one of the processes of order within an interval
plied by A7. As in the SSE method the actual probability for A 7 after time ' is given by
choosing an exit corner, given an entrance corner and a spin
configuration on a shaded plaquette, is obtained by dividing ¢’ ¢ \7/Ar ¢’ c
one of the weights above by the appropriate matrix element P(r")Ar= (— —) (1— —+1- —)
from Egs.(39). W2 Wy W2 Wa
In the limit A7—0 this mgthod might seem very slow as :ef(ao+a2)7'(a0+ @,)A 7, (41)
one needs to make a choice for every plaquette of which
there are infinitely many in this limit. However, one can use\yhere in the last equality we have taken the litit—0,
the method employed in the continuous-time implementationyng the quantities; are finite asA 7—0;
of the standard world-line loop algorithpd], which is based

'=1+|C 1+hb)A +
c = Z 7 T

on the fact that the,c’ weights are of order unity. Thec’ b+ b

weights describe the process of continuing the loop construc- A= WA, (42
tion in the imaginary time direction on the same site. Being 3

of order unity means that this will be the dominating process. R

The other processes are multiplied Ay and will therefore o :a +b; 43)
occur much less frequently. 2T W,AT

To illustrate in detail how a loop is constructed in the limit
A7—0, consider as an example the situation shown in Figwhere the subscript oa indicates which neighbor is consid-
12. This figure shows the full imaginary-time spin configu- ered. Recall that by definitiolV;=b+c+b; and W,=a
rations for four sites. The dotte@olid) lines correspond to +b,+c. Thus, with a random number generator one can
spin down(up). The figure can be understood as the limitgenerate “decay” times according to the distributi¢fl)
A7—0 of Fig. 10. The loop construction consists of moving and take the random decay time generated as the point where
the loop head. This motion begins at a random site and timene of the processes’, b,, b, or b; occurs. If the decay
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time so generated is bigger thap— 7, the loop head can be slowest mode of the simulatiofthe transition matrix of the
moved directly all the way to time;, while flipping all the  Markov chain to which the observabl® couples. For short
spins on site 1 up to timer;. There it enters a shaded times, the behavior is typically different for different quanti-
plaquette from the lower left corner. This plaquette hasties, even if7q is the same. The integrated autocorrelation
weight W;, and the possible choices for exit corners aretime is defined according to
determined by the ratio of the weight$, a’, andb’ to W,
which are all finite asA 7—0. One can hence just use the
random number generator to select the exit corner. Given
that the outcome of this choice is, for instanaé, the loop
head would move to site 2 while flipping spins, which and is the autocorrelation measure of greatest practical utility
changes the shaded plaquette of tye to be of typeW,.  [49].
The process would then continue in the downward direction In this section we will present integrated autocorrelation
on site 2. If the decay happens beforg the loop head times for some important quantities in several regions of the
moves to the decay point while flipping spins and then aparameter space of the anisotropic Heisenberg mdgeive
choice between the possible decay types is made. Given the@nnot present a completely exhaustive study, however, since
a decay occurs, the choice of different types of decays i#1 addition to the fielch and the anisotropy, the autocor-
again independent oA~ as only the ratios matter. As an relations also depend on temperatli'd=3"" and the lat-
example, the probability of selecting’ is a’/(a’ +b,+b tice size. In addition, in SSE simulations the autocorrelations
+bs). This type of process is illustrated in Fig. 12. Having depend on the constaatin the matrix elementél8). One of
made the choice, the process continues, and the loop closeyr aims here is to find the optimum valueeofWe compare
when the loop head reaches the original starting point. ~ Simulations with the original generéhondeterministit SSE

In practice it is convenient to store the spin-flip events inoperator-loop updatgl8] (solutionA) and the new solution
a doubly linked list for each lattice site so that spin flips canof the directed-loop equations discussed in Sec. I($8lu-
be added and removed efficiently. The main computationalion B). We also present some results obtained with solution
cost is then to search the site of the loop head and its neighd in continuous-time PIM simulations.

1 o]
T Q1= 5+ 2, Ag(t) (45)

bors for spin transitions. The physical quantities that we will focus on here are the
In zero magnetic field the directed PIM loop algorithm magnetization

proposed here corresponds exactly to the single-cluster for- N

mulation of the ordinary loop algorithm for-1<A<1 M= i D ) (46)

[4,16]. This can be seen by setting all bounce weights to zero [\ '

andC= —A/4, and then comparing our weights to Eg§9)
in Ref.[49]. In the language of the usual loop algorithm, our the uniform magnetic susceptibility
weight a corresponds to horizontal breakupsto diagonal N )
breakups, and to vertical breakups. The general algorithm B 2 < 4
with bounces is more similar to the worm algorithiBl, but Xum N\ | & ’ (47
the processes by which the worm is propagated through

space-time are different and do not correspond to a solutiothe staggered susceptibility

of our directed-loop equations. This will be further discussed
in Sec. VII. In Sec. V we will demonstrate that the directed-

1 B
- VX X HYRY Z 4
loop processes, especially with solutiBn(in both SSE and XsTN % (=17 'JO dr(S(7)S{(0)), (48
PIM implementationslead to much more efficient simula-
tion algorithms. and the spin stiffness
2
V. AUTOCORRELATIONS :i@ (49)
Ps &¢2 ’

Autocorrelation functions provide quantitative measures
of the efficiency of a Monte Carlo sampling scheme in gen-whereE( ¢) is the internal energy per spin in the presence of
erating statistically independent configurations. For a quana twist ¢ in the boundary condition. These quantities and
tity Q, the normalized autocorrelation function is defined astheir SSE estimators have been discussed in detail in Ref.

) ) ) [42].
Ac(t)= (QUiI+1)Q(i))—(Q(i))? We note again that the definition of an MCS in the generic
@ (QHH—(Q)?

SSE operator-loop scheme involves some degree of arbitrari-

ness, as was discussed in Sec. Il D. There is also a statistical
wherei andt are Monte Carlo times, for which we will use uncertainty due to the statistical determination of the number
the unit of 1 MCS(as defined in Sec. II D in the case of SSE, N, of operator loops constructed per MCS. In all the SSE
and with an analogous definition for the PINThe brackets simulations discussed herdy, was adjusted during the
indicate the average over the timeAsymptotically, the au- equilibration of the simulation so that on an averagh 2
tocorrelation function decays exponentially ase V7, vertex legs(excluding bounceswere visited in each MCS.
where the asymptotic autocorrelation timgis given by the  The maximum expansion powst was increased if needed

(44)
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after each equilibration MCS, so th&ét=1.2m,,,, Where o 05 |
Solution A

Nmax IS the highest powen generated so far in the simula- 10 |
tion. The statistical uncertainties My andn,,, imply some
fluctuations in the definition of an MCS. This, in turn, results
in fluctuations in the results for the integrated autocorrelation
times that can be larger than their statistical errors. Typically,
these fluctuations are only a few percent, however, and are
hence not problematic.

In the PIM simulations, we adjustéd| so that on average
the total length(again excluding bouncgsf all N, loops in
a MCS is equal tg8N, the space-time volume. The defini- Solution B o0
tions of an MCS in SSE and PIM simulations are hence
similar but not identical. One reason why it is difficult to
construct exactly comparable MCS definitions in the SSE
and the PIM is that the diagonal single-operator updates car-
ried out separately in SSE are in effect accomplished during
the loop construction in the PIM. Another difference is that
there is no adjustable constantn the PIM. In Ref.[44] an
alternative approach of normalizing the autocorrelation times
by the actual number of operations performed was used.
However, also this definition may be ambiguous since it de-
pends on the details of the implementation, and there are also FIG. 13. Integrated autocorrelation times vs external field for
differences in the actual CPU time consumed, depending othe magnetization of atN=64 Heisenberg chain g8=16. The
the mix of operationginteger, floating point, boolean, ekc. upper and lower panels show results of simulations using solutions
These issues are not of major significance in the calculations andB, respectively. Several values of the constantere used, as
we present below, but should nevertheless be kept in minghdicated by the legends in the lower panel. The inset shows the
when comparing autocorrelations for the two methods. magnetization itself.

The reminder of this section is organized as follows. In
Sec. V A we first discuss SSE simulations of the 1D Heisenfields. As e is further increased there is a small increase in
berg model in an external field. In Sec. V B we consider SSErin{ M] also for weak fields. In contrast, with solutids
simulations of 2D systems in fields and with anisotropiesincreasinge has favorable effects on both autocorrelation
PIM results for both 1D and 2D systems are presented itimes up to the highest studied here. The effects are very
Sec. VC. We have also studied several isotropic systems &mall for high fields, however, since there the autocorrelation
critical points and extracted the dynamic exponent of thgime is already close to its lower bound 0.5 when0. For
simulations. We discuss these results in Sec. VD.

1M

A. SSE simulations in 1D 107

When the constané=0, the vertices with all spins up or 8!
all spins down are excluded from the SSE configuration =26l
space wherh=0, since the corresponding matrix elements oo
(18) then vanish. Whem>0, the all-up vertex is again al- 4
lowed. With e>0 all vertices are allowed and the propaga- ol
tion of the loop is then more random. We here begin by
studying how the simulation efficiency depends ©in the 0
case of the 1D Heisenberg modél £ 1) in a field. 1.1+

Figures 13 and 14 show the field dependence of the inte- 1.0 t
grated autocorrelation time of the magnetization and the 1
staggered susceptibility in simulations of chains with 64 sites % 0.9
at inverse temperaturg@=16. As shown in the inset of Fig. :ﬁ 0.8 |
13, at theT=0 saturation field lf;,/J=2 in 1D), the mag- 0.7 %o
netization is about 10% from saturation at this temperature.
The staggered susceptibility is peakedhatO, reflecting the 06 [ Solution B
fact that the staggered spin-spin correlation function for spin 0.5 : : : .
components parallel to the external field is dominant only in 0 0.5 1 1.5 2
the absence of a field. In the case of solutsimulations, h/y
the effect of increasing from 0 is an initial small drop in FIG. 14. Integrated autocorrelation times vs external field for
T M] for fields h=0.8 and a small increase at higher the staggered susceptibility of @4=64 Heisenberg chain g8
fields. There is a substantial increaserip| xs] for weak  =16. The inset shows the staggered susceptibility.
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FIG. 15. Bounce probabilities in solutioh-and B simulations
of an N=64 Heisenberg chain g8=16, using different values FIG. 16. Integrated autocorrelation times for the magnetization
of e. in simulations of chains of different lengtité at inverse tempera-

ture B=N/4. The inset shows the magnetization.

all e values, the autocorrelation times are considerably js again the most dramatic in the limit—0. In both

shorter with solutiorB than with solutionA. This shows that  go|ytions, the autocorrelation time is rather strongly peaked,
the strategy of decreasing the probability of the bounce progith the peak position for the largest systems at slightly
cesses in the operator-loop construction is working. The efyigner fields for solutiorB. The reason for this type of field
fects are particularly pronounced at and closk 40, where  gependence is not clear and deserves further study. It cannot
the shortest autocorrelation times with solutiBrare only  pe ruled out that a still more efficient directed-loop solution
about 10% of those with solutioA. . could be found at intermediate field strengtigich would

In Fig. 15 we show the probability of bounces in the jmply that minimizing the bounce probability does not nec-
simulations Ppounce is the fraction of bounces, including essarily lead to the most efficient algorithm
Iength-O |00p$ The behavior reflects that of the autocorre- When the tempera‘[ure becomes small Compared to the
lation times. With solutionB, Ppounce decreases monotoni- finite-size gaps in the system, a step structure in the magne-
cally with € for all fields, whereas with solutioA the be-  tization versus field curve can be clearly resolved, as is
havior is nonmonotonic. In solutiol, the vanishing of shown in Fig. 17a). These steps are also reflected in the
Poounce POth in the limitsh—0 andh—hg,/J (at T=0)  autocorrelation time, as shown in Fig.(bY. There are sharp
follows by construction, as discussed in Sec. Il. With solu-maximas in the regions where the magnetization switches
tion A the bounce rate is large in these limits. between two values. Exactly &=0, the autocorrelation

For weak fields, a smad>0 has favorable effects on the function (44) for the magnetization is ill defined, since there
magnetization autocorrelations both with solutighandB.  are then no fluctuations ikl on the magnetization plateaus.
In the case of solutioB, both 7i,{ M ] and 7] xs] continue  However, we find that the limiT—0 is well behaved in the
to decrease also whee~1, as seen in Figs. 13 and 14. simulations. Exactly at the switching fields;,,[ M ] appears
Nevertheless, it is not practical to use a very laggence the  to diverge, however, showing that tunneling between the two
average expansion ordgn) (and hence the operator se- equal-probability magnetization sectors becomes rare. Figure
quence sizeM) has a contributioneSN,, and there is a 17(c) shows the average size of the operator loops. There are
similar increase in the number of operations needed to carrshaxima at the switching fields, with the peak heights grow-
out 1 MCS. However, Figs. 13 and 14 indicate that even ang as the temperature is lowered. On the plateaus, the loop
small value €~1/4) gives a significant improvement of the size does not change much wigh A divergence of the av-
magnetization autocorrelations relativede 0 simulations.  erage loop size with3 at the switching fields can be ex-
We find that this behavior persists also for larger systenpected, since in order for the magnetization to change, the
sizes and lower temperatures. Figure 16 shey$M | for  loop has to wrap around the system in the SSE propagation
different system sizebl at inverse temperatur@=N/4, us-  (or imaginary time direction, which is of length~ 3. The
ing both e=0 and 1/4. The advantage ef=1/4 becomes convergence of the average loop size on the plateaus can be
more pronounced with increasing system size. Rer128  understood on the same grounds. Apart from the oscillations,
the maximumr,{M] is reduced by about 50% for both there is also a significant increase in the loop size as the field
solutionsA andB. The relative advantage of solutioBover  increases.
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FIG. 19. Integrated autocorrelation times for the magnetization
in simulations of the 2D Heisenberg model in a magnetic field,
using solutionsA (circles and B (squares and constante=0

FIG. 17. Magnetization vs field of aN=64 chain(a), the cor-  (filled symbolg and 1/4(open symbols The inset shows the mag-
responding integrated autocorrelation tifhg, and the average size netization(the differences iM between. =16 andL =32 are very
of the operator loopsc). Solid and open circles show results@t  small at the inverse temperatyfe=8 used herg
=64 and 128, respectively. The simulations were carried out with

solution B of the directed-loop equation wite=1/4.

becomes very small. Problems with loops that do not close
[40,44) are therefore absent in this case. We did not have to

Distributions of loop sizes g8= 128 are shown in Fig. 18 i?goci‘etha;éiga)g&w: (;Zceusdsuer??ntthh?sk;))(;?)ecronsnuc“on in

for field strengths corresponding to magnetization plateau§l In the studies of the 1D Heisenberg model 'in a field that
h/J=0 and 0.14) and itching fieldsh{J=0.07 and ;
E) 21). Ath=0 the)re are i\(,)VIbOlIJn?:e Iproce(sses and this ap\/_ve have presented here, the new solutbis clearly better

e ' L ; ._than solutiorA, although the difference is very large only for
pears to be reflected as a qualitatively different loop siz close to O(but signi?icant also foh—h..) Xlreagdy wi%/h
distribution than forh>0, with no very large loops and a . . X sa: A
larger probability of sizes in the rangé-22*. For all fields, SOIUt'OnhA tthe autocorrdelattlon ttlrr]ne for the mﬁgnetl\z/ﬁl;‘)ntlﬁ
there is quite a sharp crossover beyond which the probabilit\gery short compared 1o other: approaches. : €

10°

_1

10

10

m

ontinuous-time worm algorithmr,[M] is close to 100
even for system sizes as smalllds-10 andN =20 [41].

B. SSE simulations in 2D

For the 2DXXZ model (on periodicL XL lattices, we
have calculated autocorrelation times versus the field
strength in systems with isotropic couplingd£€1, O<h
<hg=4J), Ising-anisotropic systems in zero field£1,
h=0), and theXY model in zero and finite fieldX=0,
h/J=0,1/2).

Figure 19 shows the field dependence of the autocorrela-
tion time for the magnetization df=16 andL =32 systems
at inverse temperatur@=28. With solutionA at e=0, a
sharp drop in the autocorrelation time can be noted immedi-
ately whenh becomes nonzero. It is not surprising that the
algorithm ath=0 is inefficient, since the only processes oc-
curring here are the switch-and-reverse and the bo(sae

FIG. 18. Loop size distribution fa =64 chains ap=128 and  Fig. 3). The bounce probability is high if it is not excluded
different field strengthgsolutionB simulations withe=1/4). P(m)  “by hand,” which would yield the much more efficient de-
is the cumulative probability of loop sizes betweef @ for m  terministic loop rules. With the bounce included, the actual

=0) and 2"*1-1,

closed loop is still deterministic, but during its construction
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FIG. 20. Integrated autocorrelation times for the staggered sus- FIG. 21. Upper panel: bounce probabilities in simulations of a
ceptibility in simulations of the 2D anisotropic Heisenberg model at32X 32 anisotropic Heisenberg model At=8. Lower panel: the
B=38. The symbols indicate solutions, B, and e=0,1/4 in the  average loop size in the same simulations.
same way as in Fig. 19.

systeme=0 implies that the closed loops ade factodeter-
the propagating open end oscillates randomly back and forthinistic for all anisotropiegthe only allowede=0 vertex
along thede facto deterministic trajectory until the loop processes are again the bounce and the switch-and-reverse
closes or is annihilated via backtracking all the way to theHowever, the symmetry of flipping and flipping back loops is
starting point. Oncén is nonzero, the loops become mani- broken whenA>1 and thede factofixed structure of the
festly nondeterministi¢since an additional vertex path be- closed loops is not taken into account during their construc-
comes allowegand apparently, as seen in Fig. 19, even for ation, neither with solutiorA nor B (doing this would corre-
very smallh the simulation is much more efficient. This is in spond to neglecting the bounces, constructing a deterministic
contrast to the 1D cadsee Fig. 15 where solutiorA with loop, and then taking\ into account in a Metropolis accep-
e=0 is reasonably efficient even fir=0 andr,,[M] in-  tance probability for actually flipping the loop, in a way
creases wheh is turned on. This difference between the 1D analogous to what has been done with the standard world-
and 2D simulations may be related to the loop sizals line loop method for weak magnetic fielfi85]). SolutionB
though the full explanation probably is more complex and isminimizes the bounce probability and hence leads to more
related to the different physical properties of the systemsdirected paths and, therefore, closing of the loops in fewer
which are reflected in the loop structure one dimension, steps(and hence a larger number of completed loop in an
the loops are relatively small, and for a smak large frac- MCS as defined hefeBounce probabilities are shown in the
tion of the constructed loops are then identical to the deterupper panel of Fig. 21. Whee>0 the loops become mani-
ministic ones ah=0. In two dimensions the loops are much festly nondeterministic, leading to significantly reduced au-
larger, and then even a smdil can allow most paths to tocorrelation times. The bounce probabilities are also re-
“escape” from theh=0 deterministic loop trajectories so duced, but for both solution®,,,,cStill becomes large a&
that there are not as many propagations back and forth alorig increased. Nevertheless, the autocorrelation times continue
the same path as At=0. Using a nonzere also makes the to decrease. We do not expect this to be the case-ase,
path nondeterministic, and Fig. 19 shows very favorable efwhere the model at fixe@ reduces to the classical Ising
fect of usinge=1/4 in solutionA ath=0. For higher fields, antiferromagnet at temperatufe-0. In that limit, a classi-
there are only very minor advantages of a nonzeravhich  cal single-spin flip would correspond to flipping spins on all
is also in contrast to the 1D case. As in the 1D case, solutioSSE vertices on a given sifthe number of which scales as
B reduces the autocorrelation times very significantly atBA), which would be a slow process since the bounce prob-
weak fields, and substantially also at higher fields. The difability is high. The lower panel of Fig. 21 shows that the
ferences betweea=0 and 1/4 in solutiorB are small at all average loop size becomes very small for latgeThe algo-
fields, however. rithm clearly does not reduce to a classical Swendsen-Wang

Figure 20 shows autocorrelation times for the staggeredr Wolff cluster algorithm as\ —« (in the classical algo-
susceptibility of Ising-anisotropic systems in zero field3at rithms the cluster size-N as T—0). However, at higher
=8. SolutionB performs significantly better than solutién  temperatures the algorithm could easily be supplemented
for A<1.5, but only marginally better at highdr. In this  with a cluster update which corresponds exactly to the clas-
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FIG. 22. Spin stiffness of th&XY model at zero external field FIG. 23. Upper panel: integrated autocorrelation times vs exter-

(upper pangland ath/J=0.5 (lower pane). The insets show the nal field for the magnetizatiofsolid circle$ and staggered suscep-
corresponding integrated autocorrelation times. SoluBowith e tibility (open circley in PIM simulations of arN=64 Heisenberg
= €min (See Table)lwas used in all cases. chain at@=16. Lower panel: bounce probability vs external field in

. - - . . the same simulation.
sical one(a multispin generalization of the flips of free spins,

where clusters of spins connected to each other by operatogggorithm. To make a reasonable comparison with the auto-
in Sy can be flipped simultaneously without changing thecorrelation times for the SSE, we will also define a MCS in
weight if e=0 andh=0). As in the standard world-line loop the PIM so that it include$, loops.N;, is determined such
algorithm[49], it is also possible to include loop freezing in that on average the total path length, excluding the first path
the deterministic loop algorithm. segment immediately following each bounce, ofMylloops
Note that there is essentially no structure in the soluBon in an MCS is equal to the space-time volurg® (in the
autocorrelation time foe=1/4 in Fig. 20, in spite of the fact PIM, each path segment has a length in imaginary time, in
that the scan over anisotropies should cross an Ising-typeontrast to the SSE where the steps are just colntdds
transition to an ordered state. At=3 the antiferromagnetic  definition is chosen so that it corresponds reasonably close to
order is already at=97% of the maximum(classical T the definition used in the SSE. However, it could be argued
=0) value, as can be inferred from the insets of Fig. 20 bythat a better definition of the total path length would be to
using Eq.(48). add all the path segments; but instead of excluding the seg-
For the XY model (A=0), the directed-loop equations ment immediately following a bounce, one would subtract
have a solution without bounces for all fields up to the satuthe part of the path immediately following a bounce that
ration field. We find that the resulting algorithm is very effi- overlaps with the path segment preceding the boundtn
cient, with autocorrelation times smaller than 1 for all systemspecial care taken for consecutive bounceékhis would
sizes and temperatures that we have studied. Figure 2Rore accurately take into account the fraction of spins actu-
shows results for the spin stiffness as a function of temperaally flipped. We have here used the first definition of the
ture for zero field as well as &/J=0.5. The corresponding MCS as it corresponds more closely to how we define an
autocorrelation times are peaked around the KosterlitzpMCS in the SSE methotwhere a different treatment of the
Thouless(KT) transition temperature but do not grow with pounces could of course also be implemented—see Sec.
the system size. The KT transition in tihe=0 system has | p).
been studied to high accuracy using a continuous-time Generally speaking the computer implementation of the
world-line loop algorithm, with the resulfyr/J~0.342  p|v is more complex than SSE, as it is always necessary to
[24]. Ourh=0 data are in complete agreement with the preyeep track of the spin states on neighboring sites in the PIM.
vious results. We find that the data for=0.5 shown in Fig.  This js not required in the SSE formulation, where the ver-
22 can be collapsed onto the=0 data if T andps are both  ices contain all the information needed. Therefore our com-

sqaled by t_he same factow(1.05 .for h/J=0.5), in _accord puter code for the PIM is not as efficient as the SSE code in
}'(V)'mgeﬁgévjr\fﬁ'|'tge°f trgiéﬁgz'té?:év'vv'h(gfee)(tenS'Ve re‘Sunsgenerating a single MCS, and so we will be content in this
P ' section to show just a few PIM autocorrelation results. As
solutionA of the directed-loop equations was already shown
above to be much less effective than solut®nwe will in
Next we will show some results for autocorrelation timesthis section just show results for soluti@n
obtained using the PIM implementation of the directed-loop Figure 23 shows the integrated autocorrelation times

C. PIM simulations
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FIG. 24. Field dependence of the integrated autocorrelation gig. 25. Integrated autocorrelation tim@M) vs external field
times for the magnetization in PIM simulations of chains of differ- fo; the magnetization of a 2616 Heisenberg square lattice at
ent lengthsN at inverse temperatur@= N/4. B=8.

Tl M] and 7, [ x<] for a 64-site Heisenberg chail&1)  implementation of the directed-loop algorithm. That is, what
at inverse temperatur8=16 as functions of the magnetic kind of data structures are used to represent the spin and
field. Comparing the results in Figs. 13 and 14 with the SSEyertex configurations, what kind of search algorithms are
it is seen thatr,[ M] is comparable to the=1 case while used for finding spin states at a given time in the PIM, etc.
Tind Xs] IS more similar to thee=0 curve, except close to While we do not attempt to compare the PIM and SSE in this
h=0, where it also behaves more like the=1 case. The respect here, it is quite clear that it is often easier to find a
lower panel of Fig. 23 shows the field dependence of thdast and effective implementation for the SSE than for the
bounce probabilityPp,nceis defined here as the number of PIM. We also note that the convergence to ée limit in
bounces divided by the total number of times the path buildthe SSE is relatively fast in all cases we have studied so far.
ing changes, either by moving to a neighbor site or by back'he convergence appears to be slowest in 1D, but even there
tracking. This measure is not directly comparable to the defithe reduction of the autocorrelation times becomes small be-
nition in the SSE case, as the movesnd c’—where the yond e=1, where they are similar to the PIM autocorrela-
path continues on the same site—are not counted in the d&ons.

nominator ofPpyunce (they are infinitely many in the PIM

Nevertheless, the general behaviorRyf,,,.cversush is the D. Dynamic exponent

sarlneFf_or t2h4e twohmetholds. ¢ M ¢ , ¢ An interesting question is how the autocorrelation time
n o '%f \g?_f ave phot_te !”fgd ]I as”a unct|o_n(7 Mag- " diverges with the system size in simulations at a critical
netic field for different chain sizel. In all case$3=N/4. As point. The 1D Heisenberg model &=0,T=0 exhibits

in the SSE caseFig. 19 W€ See an increase irhd M ] with ower-law (1f) decay of the staggered spin-spin correlation
system size for small to intermediate fields. However, th unction and is hence a quantum critical systEs8]. We
maximum PIM autocorrelation times are about 50% smallet, e studied the integrated autocorrelation time for the stag-

than in the SSE=1/4 case. gered spin susceptibility in this model as the system Niie

We have also carried out simulations of the 2D Heisen- :
> . increased and the inverse temperatye N/4. The stag-
berg model using the PIM. In Fig. 25 we show results for peratis g

i - _ > lgered susceptibility should couple to the slowest mode of the
i M] for @ 16<16 lattice atg=8. Here the behavior is  gjm ation, and its autocorrelation time is therefore expected
almost identical to the SSE results shown in Fig. 19, wherg, diverge asymptotically according to a power law
there is only a small dependence en

From these examples it can be seen that the PIM generally Tind Xs]~ B (50)
has shorter autocorrelation times than SSE in cases where the
SSE results show a significant dependence on the constant wherez is the dynamic exponent of the simulation. Note that
In some sense the PIM corresponds to #eoo limit of it is essential here thg andN are taken to infinity at a fixed
SSE, as in this limit the continue-straight processes alsgatio (as the physical dynamic critical exponent relating
dominate the loop construction in SSE. In cases where thepace and imaginary time is 1). It is interesting to compare
SSE autocorrelations converge slowly to their o limit, SSE simulations with solutioB at differente values(we do
the PIM approach may hence be more efficigice in SSE  not consider solutiorA here since it is much less efficient
the computation time for 1 MCS grows linearly wighin this ~ than solutionB). It is also interesting to compare the two
limit). However, in assessing a method’s efficiency onepossible ways of flipping the loops wher=0. At h=0,e
should also take into account the cost of performing a single=0, solutionB reduces to the deterministic operator loop
MCS. This of course depends heavily on the actual computdrl8]. As discussed in Sec. IID, instead of constructing a
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S . FIG. 27. SSE autocorrelation times for the staggered and uni-
FIG. 26. Autocorrelation times for the staggered susceptibilityto . gsceptibility of the Heisenberg bilayer close to its quantum
of the. Isotropic H?'Se“berg chain At=N/4 optalned in SSE and ¢ jticq point (J, /J=2.5225 was used The inverse temperature
PIM simulations with solutiorB. The dashed line has slope 0.75. B=L1J.

fixed number of loops per MCS at random, all loops can then

be constructed and flipped independently of each other witome autocorrelation results for both SSE and PIM simula-
probability 1/2. This is analogous to the Swendsen-Wangions of this model all, /J=2.524 have been presented re-
[46] algorithm for the classical Ising model. For the Ising cently [44] and indicate that the dynamic exponenatO in
model, it is known that it is more efficielie., z is smallej both methods. Our most recent simulations indicate that
to construct the clusters one by one using the Wolff algo{J, /J).~2.5225, i.e., slightly lower than the previous esti-

rithm [{15]. o . mate [28]. In Fig. 27 we show integrated autocorrelation
_In Fig. 26 we show the results of solutidsimulations  times for several quantities at this coupling, using beth
with e=0 and 1/4 along with the results froev=0 simula- =0 and 1/4 in solutiorB simulations. In thee=0 case, all

tions, where all clusters were constructed. The autocorrelgsysters were constructed in each MCS. We again note sig-
tion times of the twoe=0 simulations are very similar, but pjficant shorter autocorrelation times in the nondeterministic
for large systems, marginally shorter when all clusters argim jation =1/4). However, the deterministic simulation

ponstructed. Hence, here therg i; no advz_antage in construgt: significantly faster. One deterministic MCS et 0 typi-
ing the clusters one by one. This is most likely related to the

e B0 . .
fact that in order to change the loop structure in the SStLaIIy_onIy requires _50/0 of the CPL.J t_lme_ of a generic

. . o ; solutionB MCS ate=1/4. The net gain in simulation effi-
simulations ath=0,e=0, diagonal updates also have to be

carried out. In the scheme used here, diagonal updates afEncy withe>0 is therefore only marginal in this case. Al

only performed at the beginning of each MCS, and hence th@U" results are consistent with=0, although withe=0 the
same loop can be constructed several times in 1 MCS if the&(l)nvergence to a size-independent behavior is rather slow.
are constructed at random. It is then more efficient to conYVe have not carried out PIM simulations of this system.
struct all loops once. In order to achieve an advantage similar Next we consider the 3D Heisenberg model, which under-
to the Wolff algorithm, one would have to construct a newdoes a phase transition to an antiferromagnetic state at a
scheme for the diagonal updates, which certainly could b&onzero temperaturs2]. According to recent SSE simula-
possible but which we have not yet attempted. As in theions, using systems witN=L? sites andL up to 16, the
other cases we have discussed above, there is a significagritical temperaturd . /J=0.946+0.001[53]. These simula-
improvement where=1/4 is used in solutiorB. However, tions were carried out using only local updates. With the
the dynamic exponent appears to be the same in all casegperator-loop update, much larger systems can be studied.
z~0.75. In Fig. 26 we also show PIM results. It is clear thatWe have carried out simulations farup to 48 close to the
the autocorrelation times here are significantly shorter, bugritical temperature. Based on the results, we believeTpat
most likely the dynamic exponent is the same as in SSE. This at the low end of the previous estimate, likely very close to
shorter PIM autocorrelation times are consistent with the 100.944. Figure 28 shows autocorrelation times for the stag-
results shown above in Secs. VA and V C, and clearly wegered susceptibility and the spin stiffnessTal=0.944, ob-
could also reduce the SSE autocorrelations by increasing tained using the deterministic SSE algorithm with O (con-
further. structing all clusters during each MC8nd solutionB with

In 2D, a well-studied quantum critical system is the e=1/4. Here thee=0 results are initially consistent with a
Heisenberg model on two coupled layébslayer), with in-  dynamic exponengz~0.25, but for the largest sizes there
traplane couplingl and interplane coupling, [51]. TheT  seems to be a change in behavior, possibly a convergence
=0 antiferromagnetic long-range order in this model van-corresponding t@=0. The e=1/4 simulation is fully con-
ishes at a critical interplane coupling (/J).~2.525[28]. sistent withz=0.
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FIG. 28. Autocorrelation times for the staggered susceptibility L o .
and the spin stiffness of the 3D Heisenberg model close to its criti- FIG. 29. Total magnetization vs external field in the 2D Heisen-

cal temperature T/J=0.944 was used The lines correspond to berg model withL=64 at two inverse temperatures. The curves
scaling~ LY, were calculated using four fitted energieg(S) (the same for both

curves.

VI. LOW-FIELD MAGNETIZATION OF THE 2D

HEISENBERG MODEL present our complete results of such calculations elsewhere.

Here we will demonstrate the power of the new method by

As an example of an application made possible with sofocusing on the first few levels for system sidesip to 64,
lution B of the directed-loop equations, we here present SSke., the number of spins is 16 times larger than in the previ-
simulation results for the 2D Heisenberg model in a weakous studie$55,56.
magnetic field. At very low temperatures, the field depen- In order to see the step structure needed to extract the
dence of the magnetization exhibits a step structure due tenergy levelsE (S) for small S, the temperature has to be
the gaps between the lowest-energy states with magnetizhelow theS=1 gap, which according to E§51) and previ-
tionm,=0,21,=2,...,=N/2. These gaps can be extractedous estimates of the susceptibilityy (=~0.0650) is
from the calculated magnetization curve. For the isotropic=0.0040 for L=64. In practice, we have used inverse tem-
Heisenberg model, the gaps are exactly the gaps between tperatures3 corresponding to roughlgl/10th of the gap. We
degenerate spin multiplets with total s@+ 0,1, ... inthe have fitted the numerical results to a magnetization curve
absence of the field. (m,) calculated using energy levels of the form

In an antiferromagnetically ordered system, such as the
2D Heisenberg model, the energies of 820 multiplets EL(Sm,)=E(S)—hm,, m,=0,£1,... =S
relative to theS=0 ground state should correspond to the (52)
excitations of a quantum rotor whe®<+/N. The overall
energy scale can be related to the unifdtransversgmag-
netic susceptibilityf54]:

at the same temperature as in the simulations. We adjust the
energieE, (S) to give the best match between the calculated
and theoretical magnetization curves. Figure 29 shows re-
sults forL=64 at 8=2048 and 4096. We used the same
w, (51) fitted levelsE, (S) at both temperature&learly, theS=1
2L, level completely dominates th@=4096 results, which in-
clude only the first magnetization sbep\s in Ref.[56], we
where L2=N. The asymptotic validity of this relation has define a spin- and size-dependent susceptibility using the en-
been verified using quantum Monte Carlo estimates for smakrgy levelsE, (S) obtained in this fitting procedure,
SandL up to 16[55,56. Recently, a slow convergence of
the spectrum forS~L has been pointed out for the 2D 1 L*E(9
Heisenberg model with spin 1[/5&6]. A systematic study of 2xLs S(S+1)’
E (S) for systems larger thah=16 was not possible, how-
ever, because of the large statistical errors in the energy difind extrapolate data for fixe8 to infinite size in order to
ferences. determine the thermodynamic susceptibility . Figure 30
With the directed-loop algorithm we can instead extractshows our results fd8=1,2,3 and system sizes ranging from
the energy gaps using the field dependence of the magneti-=8 toL=64. The results up th =16 agree very well with
zation. As we have shown in Sec. V, the new solut®n those presented previoudl§6], but our statistical errors are
shortens the autocorrelation times very significantly for lowconsiderably smaller. The collapse of the three curves onto
fields, which is what we need in order to accurately extraceach other for large systems demonstrate the validity of Eq.
the energy levels foiS ranging from 0 to~L. We will (51) for small S. Extrapolating the three datasets to infinite

E(S)=

(53
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introduced in the worm algorithm, where they enabled cal-
culations of off-diagonal correlation functiof&reen'’s func-
tions). It was also the first method that was practically useful
in the presence of external fields. It is, however, not the
presence of the discontinuities that makes the worm algo-
rithm and directed-loop algorithm applicable in the presence
of external fields. One can also think of the construction of
the standard world-line loopgl6,49 in terms of moving
discontinuities, but they are more constrained in their motion
and therefore cannot take external fields into account. Hence,
it is the rules for moving the discontinuities that determine
whether or not a simulation is efficient. The directed-loop

equations constitute a framework for optimizing these rules.
5200 002 004 006 008 o010 o2 Below we will comment on the similarities and differences

1L between worms and directed loops.

Th rator-| i
FIG. 30. Inverse susceptibility extracted using the energies ofS imulzti%%es[ig Cg?r%:p:negg fgeglozf:i){: ljg?sstglﬁt%i)f%rf SSE
the S=1, 2, and 3 multiplets. The curves are quadratic fits. . p_ P .
the directed-loop equations. We have here constructed a dif-
ferent solution B), which minimizes the probability of

good agreement with Ref56] but with a considerably re- backtracking in the loop construction and therefore is more
duced statistical error. efficient. The new solutiorB completely eliminates back-

For the L=64 simulations at3=4096, the CPU time tracking(bounce processgm the X XZ model forz anisotro-

needed to perform one MCS+4s30 s on an Intel Pentium 11l Pies —1<A<1 up to a finite external field (up to the

running at 866 Mhz. The results shown in Fig. 29 are basegaturation field forA=0 and only exactly ah=0 for |A|
on (3-8)x 10* MCS for each data point. =1). In other interesting parameter regions the bounce prob-

ability is typically a few percent or less. Our simulation re-

sults show that the new solution can decrease the autocorre-

lation times by up to an order of magnitude or more in cases

We have introduced the concept of directed loops in stowhere solutiorA is the least efficientat weak and interme-
chastic series expansion and path-integral quantum Montdiate magnetic fields and anisotropieshe algorithmic dis-
Carlo and implemented them for simulations of the §2  continuity of the previous approac¢which amounted to us-
XXZ model in an external magnetic field. The directionality ing a very efficient deterministic algorithm &t=0 and the
of the loop reflects the asymmetry between the operation afuch less efficient generic solutioh for h>0) is hence
flipping the spins along the loop and the reverse operation cdvoided with solutiorB, where the bounce probabilities and
flipping back those spins. Such an asymmetry is not presetihe autocorrelation times smoothly connect to those of the
in the standard world-line loop algorithi4,16,49, which as  deterministic algorithm. However, our results also indicate
a consequence is restricted to certain regions of the paranthat the deterministic loop constructiontet 0 is not always
eter space. Quite generally, there is a hierarchy of thretghe most efficient. With a nondeterministic solutiolution
classes of directed loops. In the most general case the lodp with the constant>0 in the bond operatdithe operator
can backtrack during construction. In some regions of thepaths becomes more random, which has a favorable effect on
parameter space the backtracking can be excluded, and ihe autocorrelations.
some further restricted regions the loops become symmetric In addition to being more efficient in terms of the auto-
(nondirectional and reduce to the type of loops previously correlation times measured in units of our defined MCS, so-
considered for world-lind4,15,17 and SSE[18] simula- Ilution B is also typically faster as the number of operations
tions. Hence, the directed-loop framework constitutes a naturequired to perform 1 MCS is smallévecause of the smaller
ral generalization of the loop-cluster concép6]. We have  bounce probability In terms of ease of implementation, so-
shown that the transitions between the different levels of thdution A is more straightforward as it is directly given in
hierarchy can be made smooth by minimizing the probabilityterms of matrix elements of bond operators. In order to
of backtracking when solving the directed-loop equationsimplement solutiorB for a new Hamiltonian, one first has to
We have also demonstrated that the algorithm based on thigvestigate the subclasses of vertices with their directed-loop
solution works very well in the full parameter space of thesegments and then minimize the bounce probabilities for all
XXZ model. nonequivalent classes. SSE with solutidariand other spe-
Our scheme appears to be much more efficient than theial solutions for Heisenberg anklY models have already

worm algorithm for continuous-time path-integral simula- been used for a number of different lattices and Hamiltonians
tions[3], which also is applicable in the full parameter space[26—29,32—4( but so far we have only investigated solu-
but does not exhibit the three-level hierarchy of the directedion B for the XXZ model discussed in this paper. We expect
loops (at least not in its current formulatipriThe configura-  generalizations to a wide range of other models to be rela-
tion space involving two moving discontinuities was first tively straightforward.

75 r

70 |

6.0 -

size gives the susceptibility, =0.06590.0002, again in

VIl. SUMMARY AND DISCUSSION
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In the continuous-time path integral, soluti@ of the limit, and the computation time for 1 MCS can be signifi-
directed-loop equations for zero field ajfl|<1 results in  cantly shorter in SSE. PIM algorithms should be more effi-
an algorithm identical to the standard world-line loop algo-cient in cases where the diagonal part of the Hamiltonian
rithm [4,49]. The generic algorithm, which includes a prob- dominates in the internal energy, as the PIM configurations
ability of back tracking as the loop is constructed, has soméwhich do not contain diagonal operatptiien are smaller
features in common with the worm algorithi]. The ex-  than the corresponding SSE configuratip4g]. Another im-
tended configuration space with an open world-line segmerROrtant aspect is the ease of implementation and optimization
(the worm is the same in the two method@and is analogous of the simulations for various models. We have found the
also in the SSE operator-loop construction, although the regdiscrete nature of the SSE configuration space, where the
resentation there is discrete rather than Contin)Jddsw_ vertices |Oca||y contain all information needed to construct
ever, there are important differences in the actual processée 100ps, to be a distinct advantage in this respect.
used to propagate the pair worm). In the worm algorithm An interesting question is whether the directed-loop ap-
the “jump” and “reconnection” procedures involve the cre- proach could be used to further extend the applicability of
ation or annihilation of a kink, in which one of the worm the meron concef21] for solving sign problems. We have
ends jumps from one site to another and spins are flipped ofhown that for theXXZ model, backtracking in the loop
finite equal-length segments of imaginary time at both theconstruction can be avoided in a larger region of the param-
initial and final siteg3]. The location in time of the worm eter space than where the loop algorithms previously used
end does not change in these processes, but is accomplish@d studying merons are applicablspecifically, at nonzero
in separate updates. In the PIM directed-loop scheme, thexternal fields inX'Y-anisotropic systemsThe possibility of
movement in imaginary time and the creati@r annihila- generalizing the meron concept to the whole nonbacktrack-
tion) of a kink is combined, and in each step spins are flippednd region should be investigated.
on a finite segment of imaginary time at a single site only.

This dynamics follows naturally from the vertex representa-
tion introduced for the SSE operator-loop algorithas], ACKNOWLEDGMENTS
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respond to a solution of the directed-loop equations. Our
autocorrelation results show that the directed-loop scheme is
mu.ch more effic_:ier_lt than the worms in simul_ations of the AppENDIX: PROGRAM IMPLEMENTATION OF THE SSE
Heisenberg chain in a magnetic field, for which our mea- METHOD
sured autocorrelation times for small systems are almost two
orders of magnitude smaller than those reported for the The computer implementation of a simulation method can
worm algorithm[41]. We expect the superior performance of of course be done in several different ways and is an issue
the directed-loop scheme to be quite general, as the bounc¢eore technical in nature than the mathematical definition of
minimization achieved with solutioB has no counterpart in the underlying algorithm. Nevertheless, for the benefit of
the worm algorithm(although it may be possible to develop readers wishing to quickly construct a simple but efficient
a generalization There are, however, very interesting as-simulation program, we here briefly outline the basic aspects
pects of the worm scheme which could also perhaps be inef our implementation of the SSE algorithm with the
corporated for the directed loops, e.g., the space-time potemperator-loop update. Some programs are also available on-
tial introduced in order to more efficiently measure Green'dine [57].
functions at long distancd$]. We first introduce the main data structures used to store
Comparing implementations of the directed loops withinthe SSE configuration in computer memory. The stateis
the SSE and PIM representations, one difference is that iatored as sp[rs]= = 1 representing the up and down spins at
the former there is an adjustable parametefa constant the sitess (s=1,... N). The operator-index sequen&g,
added to the bond Hamiltonian operajomhich is not can be packed into an array [ (j=0, ... M—1), with
present in the latter. We have noted that a nonzetwmas snij]=2b and smj]=2b+1 (b=1,... N,) correspond-
generally favorable effects on the autocorrelations in thang to diagonal and off-diagonal borim-operators, respec-
SSE, but a large value is not practical since the computatiotively, and smj]=0 representing fill-in unit operators. The
time also increases witk. In some sense, the PIM corre- lattice geometry can be coded into a list of siték),j(b)
sponds to SSE witlk— o, and one might therefore expect connected by the bonds, i.e., sit¢1b]=i(b), sitd2b]
the PIM implementation to be more efficient. However, in =j(b). The linked vertices are stored in the form of two
practice, the opposite is often true since already a sen@ll  lists, one containing the links and one the vertex types. The
the SSE can give autocorrelation times close to ¢hex vertex types vtkp]=1,...,6 (@=0, ... nh—1) correspond

046701-26



QUANTUM MONTE CARLO WITH DIRECTED LOOPS PHYSICAL REVIEW B56, 046701 (2002

to the six vertices shown in Fig. 1. The links I[j§ (j ~ Position corresponds to the vertex numberj/4 and the leg
=0,...,5h—1) are arranged such that lip+i] (p index isl;=mod(j,4) (we can now for convenience number
=0,...h—1,i=0,1,2,3) contains the linkwhich is an in- the legs Q... ,3). This is the entrance leg, and the vertex
teger referring to another element in IjAK for legi+1 of  type is vtf p]. The exit probabilities given the entrance leg
vertex p [the leg numbers 1,2,3,4 are defined in Et9)]. depend on the vertex type and should be stored in a pregen-
The double-linked nature of the list implies that if I[re] erated table. The probabilities correspond to the particular

=b then lingb]=a. solution of the directed-loop equations used. It is convenient
The diagonal update is straightforward: ForO, ... M to use a list of cumulative exit probabilities instead of the
—1, a bondb is generated at random for each[$i=0, individual probabilities, so that for a given entrance lethe

which is changed to sij]=2b with the probability(14). If ~ €Xit leg can be obtained by successively comparing the cu-
the change is made, the number of bond operators presefulative probabilities prol¢,l; ,vtx[p]) for exiting at leg
increases by 1, i.en—n+1. For each diagonal element, |e=0, ... ,3with a random number in the rand®,1]. A
i.e., snij]>0 and even, the change to g=0 andn—n  corresponding list with updated vertex types is also stored,
—1 is carried out with the probabilitf15), where b so that after the exit leg has been fixed the vertex is updated
=sn{j]/2. If sn{j] is an odd integer, it corresponds to an as vtx{)—newvt{le,l;,vtx[ p]]. After this, the current po-
off-diagonal operator at bonth=sn{j]/2 and the corre- sition in link[ ] is changed to that corresponding to the exit
sponding spin states should propagate, i.e., d&r1,2, leg, i.e.,j—4p+Il.. The loop closes at this stagejif j . If
spifsitd a,b]]— — spirsitd a,b]]. it does not close, we move to the leg linked jtoi.e., |

To understand the implementation of the linked vertex—link[j]. The loop closes also at this stageji#j,. The
list, it is useful to keep in mind Fig. 2 and the numbering of two different types of closings, from within the same vertex
the vertex legs exemplified in EGL9). In order to construct or from a different vertex, are illustrated in Fig. 4. The pos-
the lists linf ] and vtf ], two temporary arrays fifss] and  sibility of aborting loop updates that become excessively

las{s] (s=1,...N) are needed. The element figtwill  |ong can be simply taken into account by exiting the loop
contain the first vertex leg on sigi.e., firsfs]=4p+i (p  update routine without mapping the already accomplished
=0,...n—1,i=0,...,3)means that the first operator act- changes in the vertex list \it back into a new operator list

ing on sites is the pth bond operator in sfij and the vertex  sn{ ] and state spin]. For theXXZ model the loops typically

leg acting on the site is=i+1 (wherel will always be 1 or  do not become excessively long in practice however, as was
2, as these are the legs before the operator has)atteah ~ demonstrated in a few examples in Sec. V.

analogous way, las]=4p+i refers to the last operator act-  After all the N, loops have been constructed, the updated
ing on sites (wherel =i+ 1 now will always be 3 or 4, since vertex list vt{ ] is mapped onto the corresponding new op-
these are the legs after the operator has actdtlelements  erator list smh]. The bond indices do not change, and there-
are initialized to firdts]=las{s]=—1 before the construc- fore one can simply cycle through the positiorjs
tion of the linked list starts. Whereas firs will be set at =0,... M—1 in the old list one by one, and for each non-
most oncenever if no operator acts on s, lasfs] canbe  zero occurrence, extract the bobe sni j]/2 and increment
updated several times as the operator lisfjgns searched an operator countgs— p+ 1 (the corresponding position in
from j=0 to M—1. For each sirj|#0, a counteip of the  the vertex list vty. The operator type, diagonal, or off-
number(minus ) of bond operators encountered is incre-diagonal can be coded in a list optypé=0,1, wherev
mented by 1 and the borld=sn{j]/2 is extracted, giving =1, ... 6 is thevertex type and 0,1 correspond to diagonal
also the corresponding sitessy=sitd1] and s;  and off-diagonal, respectively. The updated operator element
=sitd 2,b]. Links can be set whenever these sites have alis then srfij]=2b-+ optypgdvtx[p]]. The spin list spip] is
ready been encountered, i.e., far=0,1, if lasts,)# —1, updated using the list of first occurrences that was generated
link[4p+a]=las{s,] and linqlasf{s,]]=4p+a. The last during the construction of the linked list. For each sitef
occurrence is updated to Ipsf]=4p+a+2. If, on the firsfs]=—1 no operator acts on that site and the spin can be
other hand, last;) = —1, only the last and first occurrences flipped, spifis]— —spirf{s], with probability 1/2. Other-

are recorded, i.e., lgs;]=4p+a+2 and firsfs,]=4p wise, the updated spin state is obtained by extracting the
+a. The spin list spih] is propagated whenever off- vertex numbemp=firsfs]/4 and the leg =mod(firsfs],4)
diagonal operators are encountered, so that the vertex typesrresponding to the site in question. The corresponding spin
vtx[ p] can be recordefusing a map from four leg states to state can be stored as a pregenerated map, so thfislspin
the integers 1...,6). After the whole list sth] has been —legspirl,vtx[p]].

traversed, the list of first occurrences is used in order to We have now described all the basic procedures involved
connect the links across the propagation boundary, i.e., fan carrying out 1 MCS using the general operator-loop up-
eachs for which lasfs]# —1, link[las{s]]=firsf{s] and date. In the special “deterministic” cases, where the exit leg

link[firsf s]]=las{s]. is given uniquely by the entrance leg, a number of rather
The loop update is repeat®d] times. Each loop starts at self-evident and trivial simplifications are possilifze dis-
a random positiorj€{0, . .. ,s—1} in the list lind ]. We  cussion in Sec. II D

will move in link[ ] and the current position will be referred  The expansion cutoffl is adjusted during equilibration of
to asj. We hence begin gt=j, and keeg in order to check the simulation by keeping it & X ny.y, wheren,, is the
at each stage whether the loop has closed or not. The currelairgestn reached so far in the simulation and a suitable value
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for the factor isa~1.25. The number of loophl, is also  discuss the procedures for measuring operator expectation
adjusted during equilibration, to keep the average total numvalues here, but published forms for several types of estima-
ber of vertices visited in 1 MCS close to some reasonabléors[2,42,44 can be easily translated into the data structures
number, e.g., &), as discussed in Sec. I1B. We will not used above.
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