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Quantum Monte Carlo with directed loops
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We introduce the concept of directed loops in stochastic series expansion and path-integral quantum Monte
Carlo methods. Using the detailed balance rules for directed loops, we show that it is possible to smoothly
connect generally applicable simulation schemes~in which it is necessary to include backtracking processes in
the loop construction! to more restricted loop algorithms that can be constructed only for a limited range of
Hamiltonians~where backtracking can be avoided!. The ‘‘algorithmic discontinuities’’ between general and
special points~or regions! in parameter space can hence be eliminated. As a specific example, we consider the
anisotropicS51/2 Heisenberg antiferromagnet in an external magnetic field. We show that directed-loop
simulations are very efficient for the full range of magnetic fields~zero to the saturation point! and anisotro-
pies. In particular, for weak fields and anisotropies, the autocorrelations are significantly reduced relative to
those of previous approaches. The back-tracking probability vanishes continuously as the isotropic Heisenberg
point is approached. For theXY model, we show that back tracking can be avoided for all fields extending up
to the saturation field. The method is hence particularly efficient in this case. We use directed-loop simulations
to study the magnetization process in the two-dimensional Heisenberg model at very low temperatures. For
L3L lattices withL up to 64, we utilize the step structure in the magnetization curve to extract gaps between
different spin sectors. Finite-size scaling of the gaps gives an accurate estimate of the transverse susceptibility
in the thermodynamic limit:x'50.065960.0002.
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I. INTRODUCTION

In recent years, significant advances in quantum Mo
Carlo ~QMC! algorithms have opened up several classes
quantum many-body models to the kind of large-scale
merical studies that were previously possible only for clas
cal systems. The progress has been along two main line~i!
the elimination@1–5# of the systematic error of the Trotte
decomposition @6# on which most of the early finite
temperature QMC algorithms@7–11# were based~with the
exception of Handscomb’s method@12–15#, the utility of
which was limited!, and~ii ! the development of loop-cluste
algorithms @16# for efficient sampling in the quantum me
chanical configuration space@3,4,17–19#. Algorithms incor-
porating both~i! and ~ii ! have been devised starting fro
either the Euclidean path integral~world-line QMC methods
operating in continuous imaginary time@3,4#! or the power
series expansion of the partition function~stochastic series
expansion, hereafter SSE@18#, which is an extension o
Handscomb’s method!. While the Trotter error is a control
lable one and can be eliminated in standard approache
extrapolating results for different imaginary time discretiz
tions to the continuum@6,20#, its absence directly at the leve
of the simulation can imply considerable time savings wh
unbiased results are needed, e.g., in finite-size scaling s
ies. The loop-cluster algorithms~world-line loops@16,17,19#,
SSE operator loops@18#, and world-line worms@3#! have
offered even more dramatic speed-ups, in many cases re
ing autocorrelation times by several orders of magnitude
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thus enabling studies of system sizes much larger than w
was possible with local sampling algorithms. In addition,
some special cases, fermionic and other sign problems ca
eliminated with the loop-cluster algorithms@21–23#.

The new QMC methods have become important tools
quantum many-body research in condensed matter phy
~with applications to quantum spins@24–35#, bosons@36–
38#, and one-dimensional fermion systems@39,40#! as well
as in lattice gauge theory@21,22#. An important property of
some of the loop-cluster algorithms is that they are effici
also in the presence of external fields@18,19,22,41#. In par-
ticular, the SSE algorithm with the operator-loop update@18#
has proven very powerful in several recent studies of qu
tum spin systems@33–35# and boson systems@36–38# in-
cluding, respectively, a magnetic field and a chemical pot
tial. It is interesting to note that in this respect QM
algorithms now perform better than classical Monte Car
since in the latter case external fields still pose challeng
problems.

In this paper we present a general framework for co
structing loop-type algorithms both in SSE and path-integ
methods. We focus primarily on the SSE approach, wh
owing to the manifestly discrete nature of its configurati
space is easier to implement and, for the same reason, a
more efficient in most cases. In the SSE operator-loop upd
introduced in Ref.@18#, a distinction was made between
general algorithm~where it is necessary to allow the prop
gating end of the operator path to backtrack! and special
ones applicable only for certain Hamiltonians~where the
paths do not backtrack!. For example, in the case of theS
51/2 Heisenberg model with uniaxial anisotropyD and ex-
ternal magnetic fieldh ~also known as theXXZ model!,
©2002 The American Physical Society01-1
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H5J(
^ i , j &

@Si
xSj

x1Si
ySj

y1DSi
zSj

z#2h(
i

Si
z , ~1!

particularly efficient algorithms were devised at the isotro
Heisenberg point (D51,h50) and for theXY model (D
50,h50). While the general algorithm can be used for a
D,h, it does not perform as well in the limitsD→1,h→0
and D→0,h→0 as the special algorithms exactly at the
points~which are the only points at which the more efficie
algorithms can be used!. Hence, one should switch algo
rithms when crossing the isotropic Heisenberg andXY
points. The presence of such ‘‘algorithmic discontinuities’’
clearly bothersome, both from a mathematical and pract
point of view. Here we show how the algorithmic discon
nuities can be eliminated within a more general framew
of satisfying detailed balance when constructing the oper
loop. For reasons that will become clear below, we call
entities involved in this type of update ‘‘directed loops
With these, we are able to carry out simulations as efficien
in the limits approaching the Heisenberg andXY points as
exactly at those points. We also show that this scheme ca
easily adapted to continuous-time path integrals.

The outline of the rest of the paper is the following:
Sec. II we review the SSE method and the operator-lo
update on which the directed-loop algorithm is based.
outline a proof of detailed balance and also discuss a
special cases in which back tracking can be easily avoide
the loop construction. In Sec. III we first discuss a mo
general condition for satisfying detailed balance in the S
method, which leads us to the directed-loop equations.
then show in detail how this scheme is applied to theS
51/2 XXZ model. We present two solutions of the directe
loop equations. One is identical to the previous gene
operator-loop update and the other smoothly connects to
special ‘‘deterministic’’ operator-loop algorithm at the isotr
pic Heisenberg point. We also briefly discuss the structure
the directed-loop equations for a more general class
Hamiltonians. Implementation of directed loops in the pa
integral formalism is discussed in Sec. IV. In Sec. V w
present simulation results in various parameter regions of
XXZ model. We compare autocorrelation times for simu
tions using the two different directed-loop solutions. We a
extract the dynamic exponent in simulations of isotro
Heisenberg models at critical points in one, two, and th
dimensions. In Sec. VI, as a demonstration of what can
accomplished with the improved solution, we present res
for the magnetization as a function of the external field in
two-dimensional~2D! Heisenberg model at very low tem
peratures. We calculate the magnetic susceptibility us
gaps between different spin sectors extracted from the
structure in the magnetization curve. We conclude with
summary and discussion in Sec. VII. In an Appendix
outline the basic elements of a simple and efficient comp
implementation of the SSE method.

II. STOCHASTIC SERIES EXPANSION

The SSE method is a generalization@1,2,18# of Hand-
scomb’s power series expansion method for the isotropS
04670
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51/2 Heisenberg ferromagnet@12# and antiferromagne
@13,14# to a much wider range of systems. The performan
is significantly improved also for the Heisenberg mod
@27,28,42#. Early attempts of such generalizations@15# were
limited by the difficulties in analytically evaluating the trace
of the terms of the expansion. This problem was solved@1,2#
by the development of a scheme for importance samp
also of the individual terms of the traces expressed in a c
veniently chosen basis. The starting point of the SSE met
is hence the power series expansion of the partition funct

Z5Tr$e2bH%5(
a

(
n50

`
~2b!n

n!
^auHnua&, ~2!

where the trace has been written as a sum over diag
matrix elements in a basis$ua&%. Simulation algorithms
based on this expansion can be formulated without s
problems for the same models as those for which world-l
methods@9# are applicable. There are no approximatio
causing systematic errors, and very efficient loop-type upd
ing algorithms have also recently been devis
@18,23,40,43#. A distinct advantage of SSE over continuou
time world-line methods@3,4# is the discrete nature of th
configuration space, which can be sampled without float
point operations.

Here we first review an implementation of the SS
method for the anisotropicS51/2 Heisenberg model. A
proof of detailed balance in the operator-loop updat
scheme is then outlined. Several practical issues relate
the operator loops are also discussed. Estimators for phy
observables will not be discussed here. Several classe
expectation values have been derived in Ref.@2#. Observ-
ables of interest in the context of the Heisenberg model h
been discussed in Ref.@42#. Off-diagonal correlation func-
tions ~single-particle Green’s functions! have been studied in
Ref. @44#.

A. SSE configuration space

For the anisotropic Heisenberg antiferromagnet, Eq.~1!,
with N spins it is convenient to use the standard basis

ua&5uS1
z ,S2

z , . . . ,SN
z &, ~3!

and to write the Hamiltonian in terms of bond operatorsHb ,
whereb refers to a pair of sitesi (b), j (b),

H52J(
b51

Nb

Hb ~J.0!. ~4!

For a d-dimensional cubic lattice, the number of bondsNb
5dN. The bond operators are further decomposed into
operators:

Hb5H1,b2H2,b , ~5!

whereH1,b is diagonal andH2,b off-diagonal,

H1,b5C2DSi (b)
z Sj (b)

z 1hb@Si (b)
z 1Sj (b)

z #, ~6!
1-2
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H2,b5
1

2
@Si (b)

1 Sj (b)
2 1Si (b)

2 Sj (b)
1 #, ~7!

and we have defined the magnetic field on a bond,hb
[h/(2dJ). The constantC should be chosen such that a
matrix elements ofH1,b are positive, i.e.,C>D/41hb . We
will henceforth use the notation

C5C01e, C05D/41hb , ~8!

where e>0. In the Hamiltonian~4! we have neglected a
constantNbC, which should be kept in mind when calcula
ing the energy.

The powers ofH in Eq. ~2! can be expressed as sums
products of the bond operators~6! and~7!. Such a product is
conveniently referred to by an operator-index sequence

Sn5@a1 ,b1#,@a2 ,b2#, . . . ,@an ,bn#, ~9!

whereaiP$1,2% corresponds to the type of operator~1, di-
agonal; 2, off-diagonal! andbiP$1, . . . ,Nb% is the bond in-
dex. Hence,

Z5(
a

(
n50

`

(
Sn

~21!n2
bn

n! K aU)
i 51

n

Hai ,biUaL , ~10!

where b[J/T and n2 is the total number of spin-flipping
operators@2,b# in Sn . It is useful to define the normalize
states resulting whenua& is propagated by a fraction of th
SSE operator string:

ua~p!&;)
i 51

p

Hai ,bi
ua&. ~11!

Note that there is no branching, i.e., allua(p)& are basis
states, andua(p)& and ua(p11)& are either same states o
differ only by a flipped pair of spins. In order for a term
(a,Sn) to contribute to the partition function, the bounda
condition ua(n)&5ua(0)& has to be satisfied. On a biparti
lattice n2 must therefore be even, and the expansion is t
positive definite. The terms~configurations! can thus be
sampled using Monte Carlo techniques without sign pr
lems.

To simplify the Monte Carlo sampling, it is useful@1#
~although not necessary@2#! to truncate the expansion at
maximum powern5M and to insertM2n ‘‘fill-in’’ unit
operatorsH0,0[1 in the operator products in all possib
ways. This gives

Z5(
a

(
SM

bn~M2n!!

M ! K aU)
i 51

M

Hai ,biUaL , ~12!

wheren is the number of bond operators, i.e., the number
elements@ai ,bi #Þ@0,0#. One can show that@1,12# the aver-
age expansion order

^n&5bNbuEbu, ~13!

whereEb is the internal energy per bond,Eb52^Hb& @in-
cluding the constantC in Eq. ~6!#, and that the width of the
04670
f

n

-

f

distribution is approximatelŷn&1/2. M can therefore be cho
sen so thatn never reaches the cutoff during the simulati
(M;bN). The truncation error is then completely neg
gible. In practice,M is gradually adjusted during the equil
bration of the simulation, so thatM5anmax, wherenmax is
the highestn reached. A practical range for the factora is
1.2–1.5. The simulation can be started with some rand
stateua& and an ‘‘empty’’ operator string@0,0#1 , . . . ,@0,0#M
~we sometimes use the notation@a,b#p instead of@ap ,bp#).
Ergodic sampling of the configurations (a,Sn) is accom-
plished using two different types of updates.

B. Updating scheme

The first update ~diagonal update! is of the type
@0,0#p↔@1,b#p , involving a single diagonal operator whic
changes the expansion ordern by 61 @42#. The correspond-
ing Metropolis acceptance probabilities are

P~@0,0#p→@1,b#p!5
Nbb^a~p!uH1,bua~p!&

M2n
, ~14!

P~@1,b#p→@0,0#p!5
M2n11

Nbb^a~p!uH1,bua~p!&
, ~15!

whereP.1 should be interpreted as probability 1. The pre
ence ofNb in these probabilities reflects the fact that the
are Nb random choices for the bondb in a substitution
@0,0#→@1,b# but only one way to replace@1,b#→@0,0#
whenb is given. These diagonal updates are attempted c
secutively for all p51, . . . ,M , and at the same time th
state ua& is propagated when spin-flipping operators@2,b#
are encountered~these cannot be changed in a sing
operator update!, so that the statesua(p)& are available when
needed to calculate the probabilities~14! and ~15!.

The purpose of the second type of update—the oper
loop @18#—is to accomplish substitutions@1,b#p↔@2,b#p for
a varying number of operators, thereby flipping spins also
several of the propagated states~11!. The expansion ordern
does not change. It is then convenient to disregard the@0,0#
unit operator elements inSM and instead work with the origi-
nal sequencesSn of Eq. ~10!, which contain only elements
@1,b# and@2,b#. For the discussion of the operator loops, t
propagation indexp will refer to this reduced sequence. It
also convenient to introduce two-spin states

uabp
~p!&5uSi (bp)

z ~p!,Sj (bp)
z ~p!&, ~16!

i.e., the spins at bondbp in the propagated stateua(p)& as
defined in Eq.~11!. The weight factor corresponding to Eq
~10! can then be written as

W~a,Sn!5
bn

n! )p51

n

^abp
~p!uHbp

uabp
~p21!&, ~17!

where the nonzero two-spin matrix elements are

^↓↓uHbu↓↓&5e,
1-3
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^↓↑uHbu↓↑&5^↑↓uHbu↑↓&5D/21hb1e,

^↑↓uHbu↓↑&5^↓↑uHbu↑↓&51/2, ~18!

^↑↑uHbu↑↑&5e12hb .

In principle, the value ofe>0 is arbitrary, but in practice a
large constant is inconvenient since the average expan
order~13! has a contributionebNb . In many cases the simu
lation performs better with a smalle.0 than with e50,
however, as will be demonstrated in Sec. V. Fore50, the
number of allowed matrix elements is reduced from six
four ~if h50) or five ~if h.0).

The matrix element product in the weight~17! can be
represented as a network ofn vertices, with two spinsSi

z(p
21),Sj

z(p21) ‘‘entering’’ the pth vertex andSi
z(p),Sj

z(p)
‘‘exiting.’’ The six allowed vertices, corresponding to th
nonzero matrix elements~18!, are illustrated in Fig. 1. The
direction of propagation~here and in other illustrations! is
such that moving upward corresponds to increasing
propagation indexp.

In order to carry out the operator-loop update, a linked
of the vertices is first constructed. For each of the four le
on each vertex there is a spin state and a link to the follow
~in the direction of increasingp) or previous~direction of
decreasingp) vertex leg at the same site. The period
boundary condition of the propagated states must be ta
into account, i.e., the links can span acrossp50 and every
leg then has an outgoing and incoming link~i.e., a bidirec-
tional link!. In case a spin~site! is acted upon only by a
single operator inSn , the corresponding two legs of tha
vertex are linked together. Otherwise, for a site acted u
by two or more operators, all links are between differe
vertices. An example of an SSE configuration and its co
sponding linked vertex list is shown in Fig. 2. Clearly, in a
allowed configuration, links can exist only between legs
the same spin state. Note that in the representation with

FIG. 1. The six different vertices corresponding to the mat
elements in Eqs.~18!. The horizontal bar represents the full bon
operatorHb and the circles beneath~above! represent the spin stat
~solid and open circles for spin-↑ and spin-↓, respectively! before
~after! operation with either the diagonal or off-diagonal part ofHb .

FIG. 2. ~a! An SSE configuration for a three-site system w
three operators, shown along with all the propagated states.
open and solid bars indicate diagonal and off-diagonal opera
respectively.~b! The linked vertex list corresponding to~a!. The
dashed lines represent bidirectional links.
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full states in~a!, which is not stored in the actual simulatio
but is included here for illustrative purposes, we distingu
between diagonal and off-diagonal operators~as is also done
in the stored operator sequenceSM used in the diagonal up
date!. In the vertex representation~b! the two-spin states are
taken from the full propagated states~16!, and the type of the
operator~diagonal or off-diagonal! is implicitly given by the
four spin states. The bar is hence strictly redundant, but
include it in the figures as a reminder that the vertices r
resent matrix elements of the bond operators.

To construct an operator loop, one of the 4n vertex legs is
first selected at random as an initial entrance leg. One of
four legs belonging to the same vertex as the entrance le
then chosen as the exit from the vertex, and both the entra
and exit spins are flipped. Examples of how vertices cha
in the four types of processes are shown in Fig. 3. The pr
ability of exiting at a given leg, given the entrance leg a
the four spin states defining the vertex, is taken proportio
to that matrix element in Eq.~18! which corresponds to the
vertex generated when the entrance and exit spins have
flipped. As an example, defining matrix elements obtained
flipping spins in a vertex as

W~ f 1 , f 2

f 3 , f 4!~p!

5^ f 3Si
z~p!, f 4Sj

z~p!uHbu f 1Si
z~p21!, f 2Sj

z~p21!&,

~19!

wheref i521 if the spin on legi ( i 51,2,3,4) is flipped and
f i511 if it is not flipped, the probability of exiting at leg 2
if the entrance is at leg 1 is given by

P2,15
W~22

11!

W~11
11!1W~22

11!1W~21
21!1W~21

12!
, ~20!

where we have used6 for 61. The reasons for this choic
for the probability will be discussed in Sec. II C. If the e
trance and exit correspond to different sites~the switch-and-

re
rs,

FIG. 3. All four paths through two vertices where the entrance
at the lower left leg. The arrow indicates the exit leg. The result
updated vertices, with the spin at the entrance and exit legs flip
are also shown. The two cases marked with anX are forbidden,
since the updated vertices do not correspond to operators in
Hamiltonian considered here. We refer to the four different p
cesses as~a! ‘‘bounce,’’ ~b! ‘‘continue-straight,’’ ~c! ‘‘switch-and-
reverse,’’ and~d! ‘‘switch-and-continue.’’
1-4
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QUANTUM MONTE CARLO WITH DIRECTED LOOPS PHYSICAL REVIEW E66, 046701 ~2002!
reverse and switch-and-continue processes in Fig. 3!, the
change in the vertex corresponds to a change of the typ
the operator~diagonal↔ off-diagonal!. The leg to which the
exit is linked is taken as the entrance to the next vertex, fr
which an exit is again chosen. This procedure is repea
until the original starting point is reached~the loop closes!.
The mismatches~links connecting different spin states! ex-
isting at the original entrance and at the propagating en
the path are then ‘‘healed’’ and a new configuration contr
uting to the partition function has been created. Note th
depending on the way the loop closes, the spin at the
from which the loop construction was started may or m
not be flipped after the full loop has been completed. E
amples illustrating this are given in Fig. 4.

One of the two site-switching paths—the switch-an
reverse in Fig. 3~c! or switch-and-continue in 3~d!—is al-
ways forbidden since the corresponding off-diagonal ma
element of the Heisenberg bond operator is zero. The bou
path in Fig. 3~a! is always allowed since the vertex is una
fected ~the same spin is flipped twice, resulting in no n
change!. The continue-straight path of Fig. 3~b! is always
allowed if the constante.0 so that all the diagonal matri
elements in Eq.~18! are larger than zero. Ife50, at least one
of the diagonal matrix elements vanishes, and the contin
straight process is then forbidden in some cases.

If a spin in the stateua& is not acted upon by any of th
operators inSM , it cannot be flipped by the operator-loo
update. Such ‘‘free’’ spins can, however, be flipped w
probability 1/2 since they do not appear in the weight fun
tion. Since the average ofn, the number of operators inSM ,
grows linearly withb, free spins appear frequently only
relatively high temperatures.

It is convenient to define a Monte Carlo step~MCS! as a
sweep of diagonal updates at all positions inSM where pos-
sible, followed by the construction of the linked list in whic
a numberNl of operator loops are constructed before ma
ping back to a newSM and ua& and flipping free spins. Ob
servables can be measured after every, or every few, M
~in some cases, it may even be worthwhile to record m
surements after every loop!.

The remaining question now is how many operator loo
one should construct in each MCS. The operator loops
typically of highly varying lengths. Each MCS should in
volve several loop updates, so that a significant fraction

FIG. 4. Two different ways in which an operator loop can clo
The starting points of the loops in~a! and ~b! are the legs from
which the arrows point out. In~a! the last segment of the loo
connects the initial and final vertices, resulting in the starting s
being flipped in the final configuration. In~b! the last loop segmen
is within the initial vertex and the starting spin is flipped twice, wi
the net effect of no change. Both loops~a! and~b! here result in the
updated vertices shown in~c!.
04670
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the vertices are visited. In order not to bias the measu
ments, it is important thatNl is fixed. One cannot, e.g., kee
on constructing loops until the number of vertices visit
exceeds a predetermined number. The average size o
operator loops depends strongly on the model paramete
is therefore useful to record the loop sizes and periodic
adjust Nl during the equilibration of the simulation. Typi
cally, we determineNl such that the average cumulative loo
length ~the number of vertices visited! during one MCS is
approximately 2̂n& or 2M . In recording the loop length, we
do not count bounces~since no change results in the verte
off which the path bounces!. Among the counted steps ther
is still some fraction of backtracking ones, i.e., segments
the operator loop where completed vertex updates are
versed. If a bounce occurs already at the first step the l
closes immediately. With our definition, this is a complet
loop of length 0. In order not to bias the measurements, s
length-0 loops also have to be counted among theNl com-
pleted loops.

One could also fixNl based on a criterion involving the
average number of leg spins which are actually flipped d
ing an MCS, but recording this number is slightly more co
plicated than just keeping track of the loop lengths. Sin
this has to be done only during equilibration, the cost is
prohibitive, however. The exact definition ofNl and pre-
cisely what constitutes one MCS are not critical issues~as in
the classical Wolff cluster algorithm@45#, where the MCS
can also be defined in a way analogous to what we h
discussed here!.

The operator-loop construction~the operator path! is a
type of random walk in a (d11)-dimensional space~al-
though the network of connected vertices does not neces
ily have this dimensionality—it could effectively have a fra
tal dimension,d11). One may therefore wonder wheth
the closing of the loop could become problematic, especi
for large systems in three dimensions. In some cases
operator loop can indeed become very long before it clos
In rare cases a loop may even not close during a simula
of practical length. The loop size distribution is always ve
broad, however, and the nonclosing problem can simply
circumvented by imposing a maximum length beyond wh
the loop construction is terminated. The way we typica
implement this termination is by immediately initiating
new MCS~beginning with a diagonal update!, hence disre-
garding all the loops that were constructed during the M
of the terminated loop. This way, we do not have to sa
actual operator paths~needed in order to undo the chang
done during the construction of the terminated loop!, which
would become impractical for long paths. The terminati
does not violate detailed balance and hence the correct
tribution of configurations contributing toZ is maintained.
Termination of incomplete loops does introduce a bias
quantities that are related to the extended configuration sp
of unclosed paths, however, such as single-particle Gre
functions @44#. Typically, we use a maximum loop lengt
'100̂ n&. For theXXZ model~in any number of dimension!
incomplete loop termination is then extremely rare~exces-
sively long loops can occur more frequently in other mod
@40# but never seem to be a very serious problem!. The av-

.
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erage loop length is typically much smaller than^n&, but can
in some cases be a significant fraction of^n& ~up to tens of
percent!.

C. Detailed balance

In the originally proposed operator-loop scheme@18#, the
probability of selecting an exit leg is proportional to the co
responding matrix element~18! when the entrance and ex
spins have been flipped~with the factor of proportionality
chosen to give probability 1 for the sum of the four pro
abilities!, a specific example of which is written in Eq.~20!.
One can prove that detailed balance is satisfied in this
cess by considering an extended configuration space w
includes also the intermediate configurations generated
ing the loop construction~which do not contribute to the
partition function!.

The detailed balance proof is illustrated by an example
a configuration with three vertices in Fig. 5~a!. In ~a1!, the
leg with the arrow has been selected as the initial entra
point of the operator loop. An exit leg is chosen according
the probabilities discussed above. Flipping both the entra
spin and the exit spin leads to a new configuration in
extended space. In Fig. 5~a!, the three resulting configura
tions which have nonzero probability are shown in~a2!–~a4!.
The entrance→ exit paths are also indicated and the cor
sponding spins have been flipped. The probability of proc
~a3! corresponds to the example given in Eq.~20!, which

FIG. 5. Two ways to look at the extended configuration sp
generated during operator-loop construction. Examples of how
configuration shown in~a1! is modified at the beginning of an up
date in the link-discontinuity picture~a! and ladder operator pictur
~b! are shown. In~a! the arrow in 1 indicates the proposed starti
point of the loop. In~b! a first step of flipping the two spins at thi
link has already been carried out~generating ladder operators whic
are indicated by vertices with semifilled bars!, and the arrow indi-
cates the entrance point for the following step. In both~a! and ~b!
configurations that can be generated out of 1 are shown in 2
Link discontinuities are indicated by small horizontal lines in~a!. In
both cases, configuration 2 corresponds to the bounce pro
which results in immediate return to the original configuration.
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when the actual spin states are inserted becomes

P2,15
^↑↓uHbu↓↑&

^↓↑uHbu↓↑&1^↑↓uHbu↓↑&1^↑↑uHbu↑↑&
. ~21!

In ~a2!, the entrance and exit are at the same leg. This
bounce process which closes the loop immediately with
change in the configuration. In~a3! and ~a4! the vertex has
changed and two links have appeared which connect
with different spin states. We call these ‘‘link discontinu
ties.’’ Only configurations with no link discontinuities con
tribute toZ. All configurations created during the loop con
struction contain two link discontinuities, until the loo
closes~which can be seen as the discontinuities annihilat
each other!. There are no weight changes associated with
link discontinuities—the configuration weight is still consid
ered to be given by Eq.~17!. Hence, the only weight chang
arises from the change in the affected vertex when the
trance and exit spins are flipped.

The way the exit leg is chosen at the start of the opera
loop corresponds to a heat-bath algorithm. The probabili
of no change~staying in the original subspace! or transfer to
a configuration with two link discontinuities are proportion
to the respective weights in the extended space. Once a
figuration with two discontinuities has been created~i.e., the
first step was not a bounce!, we do not want to create mor
discontinuities~which would take us out of the extende
space considered here! and therefore the following update
can only take place at the discontinuities~the end points of
the path!, i.e., the discontinuities can be moved. Here t
same heat-bath algorithm as in the first step is used. The
difference is that the entrance leg is not chosen at random
is given by a link from the previous vertex. Hence, the who
process consists of a series of heat-bath steps, which sa
detailed balance and therefore generate configurations
cording to probabilities proportional to the weight in the e
tended space. The subset of configurations with zero
discontinuities, which contribute toZ, are therefore also gen
erated with the correct distribution. The process is ergo
because all types of vertices can be generated and the o
tor path can wind around the periodic boundaries and cha
both the spatial winding number and the total magnetizati
Within a sector of fixed winding number and magnetizatio
local updates which constitute a small subset of the oper
loops suffice to ensure ergodicity@42#.

Instead of thinking about the extended configurati
space in terms of link discontinuities, one can consider
vertices created when one of the spins in the original verti
of Fig. 1 is flipped. These new vertices correspond to
single-spin flipping~ladder! operatorsSi

1 andSi
2 . The loop

construction can be formulated in terms of introducing pa
of these, which are then randomly propagated until th
reach the same vertex and annihilate each other. The sta
such a process is illustrated in Fig. 5~b!, using the same
configuration and starting point as in Fig. 5~a!. The differ-
ence with respect to the previous discussion is that now th
are no link discontinuities. Instead, the spins at both end
the link at the selected entrance leg are flipped simu
neously. This introduces two ladder vertices. Here one ha

e
e
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QUANTUM MONTE CARLO WITH DIRECTED LOOPS PHYSICAL REVIEW E66, 046701 ~2002!
assign a valuev l to the matrix elements of the ladder oper
tors ~i.e., the new operators arev lSi

1 andv lSi
2). The initial

loop segment, an example of which is shown in Fig. 5~b1!, is
then generated only with a probability min@1,v l

2/(W1W2)#,
whereW1 andW2 are the matrix elements corresponding
the two vertices that are considered for replacement by
der vertices. If this first step is accepted, the next step
again to choose an exit leg. As before, the propagation of
path is carried out according to a heat-bath algorithm, w
probabilities proportional to the matrix element when t
entrance and exit spins have been flipped. In the exam
paths~b2! and ~b3! lead to closed loops~back to the space
with no ladder operators!, whereas in~b4! the ladder opera-
tors are moved further away from each other. Note that b
spins on the link corresponding to the exit leg are flipped
every step, so that no link discontinuities appear. The proc
continues until the two ladder operators are on the same
tex, which then becomes equal to one of the original bo
operator vertices. This brings the system back into the or
nal configuration space.

The link-discontinuity and ladder operator pictures of t
loop construction are clearly completely equivalent, althou
the probabilities associated with starting~or closing! the loop
are different. In actual simulations it is typically more co
venient to use the link-discontinuities view. The ladder o
erator picture explicitly relates the extended configurat
space to that of correlation functions involving these ope
tors, but the link discontinuities can be easily related to th
as well. The issue of measuring off-diagonal correlat
functions using the SSE operator loops has been consid
in Ref. @44#.

In Sec. III we will give a more formal and complete pro
of detailed balance. We will show that the heat-bath al
rithm is not the only, and also not the most efficient, way
satisfy detailed balance when constructing the operator lo
We will introduce the concept of a directed loop to form
general framework for loop updating schemes, both in S
and path-integral simulations. In the SSE scheme, the
rected loop simply leads to different probabilities of choo
ing among the four exits from a vertex, all other aspects
the method remaining as has been discussed in this sec
Before introducing the directed-loop concept, we first co
sider special cases in which the bounce process can be
cluded.

D. Excluding backtracking in special cases

In the general operator-loop algorithm discussed abo
the probability of the bounce process is always nonzero,
cause the vertex remains unchanged and has a nonzero
~otherwise, it would not appear in the configuration in t
first place!. In some special cases, it is possible to modify
algorithm in such a way that the bounce is completely
cluded. This has very favorable effects on the simulat
dynamics, since there is then no backtracking and all s
ments of the loop accomplish changes in the configuratio

The most important of the special cases is the isotro
Heisenberg model (D51,h50) @18#. A very similar algo-
rithm exists for the ferromagnet (J,0) @23#. For the antifer-
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romagnet, choosing the constante50 in Eqs.~18! implies
that the vertices with all spins up or all spins down van
and the remaining four matrix elements all equal 1/2. A
result, the matrix element product in Eq.~17! is simply
(1/2)n and is not affected by the operator-loop update. If t
bounce process is excluded, the only remaining proces
the switch-and-reverse shown in Fig. 6~a! and the path is
hence deterministic. The actual loop structure is o
changed by the diagonal update. The deterministic loop p
cess is clearly symmetric with respect to flipping or flippin
back the spins at all vertex legs covered by the loop, a
hence it obeys detailed balance. For the ferromagnet,
bounce can be excluded ifC521/4 in Eq.~6! @for the iso-
tropic ferromagnetD521 and there is no minus sign in Eq
~5!#, and the only remaining process is then the switch-a
continue process shown in Fig. 6~b!.

In the deterministic case, each vertex leg can be uniqu
assigned to a loop, and the loops can be flipped indep
dently of each other. Instead of randomly choosing start
points and constructing a fixed number of loops, one c
then construct all possible loops exactly once, by alwa
picking a starting point which does not belong to a lo
already constructed. The loops should then be flipped w
probability 1/2. The random decision of whether or not
flip can be made before the loop is constructed, but eve
the decision is not to flip one has to construct the whole lo
and set flags on the vertex legs visited, so that one does
attempt to construct the same loop again. Loops are c
structed this way until all 4n vertex legs have been visited
This method of constructing all the loops is analogous to
classical Swendsen-Wang multicluster method@46#, whereas,
as was already mentioned above, the operator-loop cons
tion in the general nondeterministic case is more similar
the Wolff single-cluster algorithm@45#.

It should be noted that in the deterministic case an al
rithm including only operator updates~diagonal updates and
loops! is not completely ergodic. In the antiferromagne
states with all spins up or down are isolated from the ot
states since no operators can act on them. These two s
are important only at very high temperatures and they
then be reached by also performing random flips of f
spins. In simulations withe.0 all states can be reached ev
without such spin flips.

Another special case is theXY model @18,26# (D50,h
50). In this case all matrix elements in Eq.~18! equal 1/2 if
the constante51/2. The weight is then again only depende
on n and does not change in the operator-loop update.
bounce can therefore be excluded also in this case, lea

FIG. 6. All allowed vertices in the deterministic operator-loo
algorithm in the case of the Heisenberg antiferromagnet~a! and
ferromagnet~b!. Operator-loop segments starting at the lower l
leg are also shown.
1-7
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OLAV F. SYLJUÅSEN AND ANDERS W. SANDVIK PHYSICAL REVIEW E66, 046701 ~2002!
two remaining allowed exits from each vertex. Althoug
these paths are not deterministic, one can still subdivide
system into loops that can be flipped independently of e
other.

The loop structure in the general operator-loop algorith
which includes bounce processes, is similar to that in
worm algorithm for continuous-time path integrals@3#, al-
though the two methods are quite different in other respe
~the actual processes used to construct the SSE ope
loops and the worms are different—see Sec. VII!. In the
special cases where the bounce process can be exclude
SSE operator loops are analogous to the world-line loops~in
discrete@16# or continuous@4,19# imaginary time!. The close
relationships between the Euclidean path integral in cont
ous time and the discrete representation on which the
method is based has been discussed in previous pa
@2,43,47# and will also be further elucidated here in Sec. I

III. DIRECTED LOOPS

In the operator-loop update discussed in Secs. II B
II C, detailed balance is satisfied using a heat-bath algori
for propagating the path between connected vertices. In
section we will present a more general set of equations
have to be satisfied for detailed balance to hold in suc
process. We will show that these equations have an infi
number of solutions, some of which can lead to a more e
cient sampling than the heat bath. We construct a partic
solution based on the intuitive hypothesis~for which we have
no rigorous proof! that the probability of bounces~back
tracking! should be minimized. We show that the bounc
can in fact be completely excluded in a much wider range
parameters than at the two isolated points~isotropicXY and
Heisenberg! discussed in Sec. II D.

We call the entities involved in the more general sche
directed loops, because the detailed balance equations
we construct~the directed-loop equations! explicitly take
into account the fact that the construction of the path
vertices is directional, i.e., the probability of exiting at
particular leg, given the entrance leg, is not the same as
probability of the reverse process. The original operator-lo
update with the heat-bath probabilities@18# discussed in the
preceding section corresponds to a particular solution of
directed-loop equations. We stress that if another solutio
used, the only difference in the actual simulation with resp
to the original scheme is a different set of probabilities
exiting at a given vertex leg, given the entrance leg and
four spin states. Before we explicitly construct new solutio
in the context of theXXZ model we begin by describing
more generally how the directed-loop equations arise.

A. Conditions for detailed balance

Let us first recall that the detailed balance requirem
reads

P~s→s8!W~s!5P~s8→s!W~s8!, ~22!

wheres denotes a configuration having weightW(s), which
in the SSE method is expressed as a product over ve
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weights, Eq.~17!, andP(s→s8) is the probability of chang-
ing the configuration froms to s8. While the weights are
given by the Hamiltonian, the probability for how to upda
the configuration depends on the actual algorithm used.

The algorithm for constructing an operator loop to upd
an SSE configuration is quite general for any form of t
two-body interaction~and can be extended also to multipa
ticle interactions!. With the configuration mapped onto
linked vertex list, an initial entrance vertex leg is first picke
at random among all 4n legs. Then an exit leg belonging t
the same vertex is chosen in a probabilistic way and the s
on the entrance and exit legs are flipped with unit probabil
More generally, the states at these legs are updated,
nonzero probabilities only for changes leading to vertic
corresponding to nonzero matrix elements. For simplic
we here assume that the change at the exit leg is uniq
dictated ~through conservation laws! by the change at the
entrance leg~generalization to cases where the uniquen
does not hold are straightforward!. The process continue
using the leg linked to the exit leg as the new entrance
The process stops when the initial starting leg is reach
The probability for arriving at a new configurations8 can
therefore be written as

P~s→s8!5( P~e0!P~s,e0→s1 ,e1!

3P~s1 ,e1→s2 ,e2!3•••3P~sn21 ,en21→s8,e0!,

~23!

whereP(e0) is the probability for choosing the vertex lege0
as the initial starting point andP(si ,ei→si 11 ,ei 11) is the
probability given a configurationsi and the entrance legei to
exit the vertex atxi , which is connected to the next entran
leg ei 11, resulting in a new configurationsi 11. The interme-
diate configurationssi belong to the extended space of co
figurations with two link discontinuities, as discussed in S
II C. The exit legsxi do not explicitly appear in the prob
abilities since they are uniquely linked to the following e
trance legsei 11. The sum is over all possible closed loop
which result in the updated configuration being the particu
configurations8. To find a convenient way of choosing th
probabilities on the right-hand side of Eq.~23! one needs an
expression for the inverse process where the spin config
tion s8 is transferred intos. This can be written down quite
simply by realizing that for each of the terms in Eq.~23!
there is a corresponding term that describes the ‘‘tim
reversed’’ path, which contributes to the reverse probabil
Thus one can write

P~s8→s!5( P~e0!P~s8,e0→sn21 ,en21!

3•••3P~s2 ,e2→s1 ,e1!3P~s1 ,e1→s,e0!,

~24!

where the sum is over thesameclosed loops as in Eq.~23!.
By inserting these expressions into the detailed bala
equation~22! we see that balance is satisfied if
1-8
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QUANTUM MONTE CARLO WITH DIRECTED LOOPS PHYSICAL REVIEW E66, 046701 ~2002!
W~si !P~si ,ei→si 11 ,ei 11!5W~si 11!P~si 11 ,ei 11→si ,ei !
~25!

for all possible SSE configurations and entrance legs.
cause the update (si ,ei→si 11 ,ei 11) changes only one par
ticular vertex, all except one of the factors in the product
vertex weights in Eq.~17! factor out and cancel. Writing
WsP(s,e→s8,x)5W(s,e,x), where we have slightly
changed the notation so thatWs denotes the matrix elemen
corresponding to asinglevertex with its four leg states code
ass, e is the entrance leg, andx is the exit leg on the sam
vertex, one can formulate the detailed balance criterion
~25! as

W~s,l 1 ,l 2!5W~s8,l 2 ,l 1!, ~26!

which should be valid for all possible vertex types which c
be converted into each other by changing the states at
entrance and exit legs. This equation implies many relati
between the unknown probabilities of how to choose an
leg given a particular vertex and an entrance leg. There
additional relations which must be satisfied. Requiring t
the path always continues through a vertex translates in

(
x

P~s,e→sx ,x!51, ~27!

where the sum is over all legs on the vertex. We have e
phasized in the notationsx that the resulting spin configura
tion depends on the exit leg. In terms of the weigh
W(s,l 1 ,l 2) this requirement translates into

(
x

W~s,e,x!5Ws , ~28!

which must be valid for all vertices and entrance legs. Th
equations, Eq.~28! together with the relations in Eq.~26!,
form the directed-loop equations, the foundations of our
proach to construct valid probability tables for the operat
loop update.

B. SSE directed loops for theXXZ model

For theXXZ model there are just three possible exits
any given entrance leg as one choice always leads to a z
weight state when spins connected by the loop segmen
flipped ~due to violation of thez-magnetization conservatio
of the model!. Figure 3 illustrates the possibilities for placin
directed-loop segments for different vertices. In order for o
updating process to satisfy detailed balance we recall
according to Eq.~26! we must relate vertices in which th
two spins connected by the loop segment are flippedand the
direction of the loop segment is reversed. Such related c
figurations are illustrated in Fig. 7. Furthermore, Eq.~28!
relates vertices with different exit legs having the same s
configuration and entrance legs. We then make the key
servation that all possible vertex configurations can be
vided into eight subsets that do not transform into each ot
Half of these subsets are shown in Fig. 8, where only c
figurations within thesamequadrant are transformed int
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each other. These configurations form closed sets unde
flipping operation. It is therefore sufficient to derive the d
tailed balance conditions, Eq.~26!, for transitions between
vertex configurations in the same set independently of o
configurations.

A row in any of the quadrants in Fig. 8 contains all thr
configurations which can be reached by entering a cer
vertex from a certain entrance leg. For instance, in the up
left quadrant the entrance leg for the first row is the low
left one, for the second row, the lower right one; and for t
third row, the upper right one. According to Eq.~28!, the sum
of the weights of all possible configurations that can
reached from a certain in-leg, keeping the spin configurat
fixed, should equal the vertex weight alone. Thus taking
upper left quadrant of Fig. 8, we have for rows 1–3 from t
top,

W15b11a1b,

W25a1b21c, ~29!

W35b1c1b3 ,

where the symbols on the left-hand sides are the ve
weights, Eqs.~18!, in the spin configuration space, i.e.,

W15^↑↓uHbu↓↑&5^↓↑uHbu↑↓&51/2,

FIG. 7. Example of two vertices with directed-loop segme
that transform into each other in the flipping process.

FIG. 8. Possible assignments of directed-loop segments for
of the different combinations of vertices and entrance legs. T
other half of the vertex configurations can be obtained by in
changing up and down spins~solid and open circles! while keeping
the arrows. The lines with arrows are the directed-loop segme
The configurations are divided into four sets~one in each quadrant!.
On flipping the spins connected by the loop segment and rever
the direction of the arrow, only configurations within thesame
quadrant are transformed into each other.
1-9
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W25^↓↑uHbu↓↑&5^↑↓uHbu↑↓&5D/21hb1e,

W35^↓↓uHbu↓↓&5e, ~30!

W45^↑↑uHbu↑↑&5e12hb ,

while those on the right are weights in the enlarged confi
ration space of spins and directed-loop segments. We h
assigned equal weights to the configurations that are rel
by flipping, in accordance with Eq.~26!. The order of the
symbols on the right-hand sides of Eqs.~29! follows the
order in the upper left quadrant of Fig. 8, so that, e.g.,
weight of the two configurations in Fig. 7 isb and the weight
of the middlemost configuration in the upper left quadrant
Fig. 8 isb2. We useb with a subscript to denote a weight o
a configuration where the exit equals the entrance~bounce
process!.

As mentioned above there are in all eight sets of ver
configurations which close under the flipping process. Th
sets are, in principle, independent of each other and h
their own equation sets. However, one can easily convi
oneself that because of symmetry reasons there are only
different types of sets. One of these symmetries is tha
permuting the two spins acted upon byHb . This implies that
the equations derived for the set in the upper left quadran
Fig. 8, Eqs.~29!, are the same as for the set~not shown! that
can be obtained from the upper right quadrant by intercha
ing up- and down-spins, keeping the orientation of t
directed-loop segments. The other symmetry is that of ima
nary time inversion, which in the figures corresponds
switching the pairs of spins below and above the horizon
bar representing the operatorHb . This symmetry togethe
with the previous one identifies the rules for the upper
quadrant of Fig. 8 with those of the lower right quadra
Thus, one only has to consider two independent sets of e
tions, Eqs.~29! and the corresponding equations that can
derived from the lower left quadrant in Fig. 8:

W15b181a81b8,

W25a81b281c8, ~31!

W45b81c81b38 .

This latter set takes the form of the set~29! but with primed
symbols to denote the weights andW4 instead ofW3. There
is a further reduction in the case of zero magnetic fie
where the two equation sets become identical.

Before discussing solutions to these sets of equation
should be stressed that the actual probabilities for selec
the exit leg are given by dividing the weight in the extend
configuration space by the weight of the bare vertex, so t
e.g., the probability for choosing the ‘‘bounce’’ proces
given that the entrance leg is the lower left one on a ver
with weightW1, as shown in the uppermost left-hand corn
of Fig. 8, isb1 /W1.

It is clear that there are many solutions with only positi
weights to the above equation sets as they are underd
mined; both sets have six unknowns and there are th
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equations with the additional requirement of non-negat
weights. A particular symmetric solution is that correspon
ing to the heat-bath probabilities used in the original sche
@18#, which we will henceforth refer to as solutionA. It is
given by

a5W1W2 /~W11W21W3!,

b5W1W3 /~W11W21W3!,

c5W2W3 /~W11W21W3!, ~32!

bi5Wi
2/~W11W21W3!.

For the primed weights,W3 is replaced byW4. Clearly the
probabilities for choosing the exit leg are here proportio
to the weights of the resulting bare vertices, which are
tained by flipping the two spins on the loop segment,
example of which was given in Eq.~20!. This solution is
valid in the full parameter space of theXXZ model. How-
ever, it generally assigns a relatively large weight to t
bounce processes where the exit leg equals the entrance
These are ineffective in updating the configurations. In p
ticular, when the fieldh→0 and the anisotropyD→1, the
bounce probability approaches 1/2. Although the method
is reasonably efficient~we are not aware of any method th
has been more successful for models including exte
fields!, this is bothersome since the SSE algorithm exactly
h50 can be formulated entirely without any bounce pr
cesses@18,43#, as reviewed in Sec. II D, and is then consi
erably more efficient. The fact that theh50 scheme has no
bounces and is completely deterministic, whereas theh→0
method has bounce probabilities approaching 1/2, inspire
to look for solutions where the bounce probability inste
vanishes continuously ash→0. This will eliminate the algo-
rithmic discontinuity of the previous approach.

For the discussion of other solutions to the directed-lo
equations~29! and ~31! it is convenient to express thes
equations in terms of the bounce weightsb1 , . . . ,b38 :

a5
11D

4
1

hb

2
1

2b12b21b3

2
,

b5
12D

4
2

hb

2
1

2b11b22b3

2
,

c5
D21

4
1

hb

2
1e1

b12b22b3

2
, ~33!

a85
11D

4
2

hb

2
1

2b182b281b38

2
,

b85
12D

4
1

hb

2
1

2b181b282b38

2
,

c85
D21

4
1

3hb

2
1e1

b182b282b38

2
,
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where we have explicitly inserted the expressions for
vertex weights, Eq.~30!. We seek positive solutions to thes
equations. Being underdetermined the set has many s
tions, so we will try to find the solutions that yield the mo
effective algorithms. As a general principle for finding ef
cient rules, we will attempt to minimize the bounce weigh
b1 , . . . ,b38 . The solution so obtained will be termed solutio
B. Inspecting the equations, it is clear that there is one reg
in parameter space where one can avoid bounces altoge
This region is shown as the shaded region in Fig. 9. From
requirement of non-negative vertex weights we already h
the restrictione>0. In the shaded region, the requirement
non-negative weights also in the enlarged configurat
space when all the bounce weights are zero imposes an
ditional constraint one: e>(12D)/42hb/2. We have no
rigorous principle of finding the optimal value ofe, in gen-
eral, but as can be inferred from our simulation tests~pre-
sented in Sec. V! it is often advantageous to choose a sm
but nonzero value in cases whereemin50.

For the Heisenberg antiferromagnet at zero magnetic fi
(D51,h50) the deterministic algorithm constructed in Re
@18# is recovered for the choicee50. The nonzero weights
are thena5a851/2, while the nonzero matrix elements a
W15W251/2, which correspond to the switch-and-rever
process illustrated in Fig. 6~a!. This is a deterministic algo
rithm as the only probabilities different from zero are uni
There is a subtlety here as the ratioc/W3 is undetermined for
e50. However, the value of this probability can be left u
determined as the vertex with all spins down will not
generated as a consequence of the vanishing of the we
W3. This is actually more general—whenever a probabi
cannot be defined because of a zero denominator, it ca
left undetermined because the probability of reaching suc
vertex is zero in the first place. For theXY model (D50) at
zero magnetic field the choicee51/4 gives a different set o
zero-bounce rules than that proposed in Ref.@18#, which,
however, also is a solution of our equations~but with e
51/2). It is quite remarkable that for theXY model one can
in fact find rules with no bounces for all magnetic fie
strengths up to the saturation field. We expect this to be v
useful.

Outside the shaded region in Fig. 9 one or more bou
weights must be nonzero. In these regions we will ag
choose the smallest possible values for the bounce weig

FIG. 9. ‘‘Algorithmic phase diagram’’ showing regions whe
various bounce weights must be nonzero. The actual values of t
weights are given in Table I. In the shaded region all boun
weights can be set to zero. Other bounce weights are liste
Table I.
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Table I shows these values for the different regions in Fig
along with the minimum value ofe allowed. Selecting a
value for e, the remaining weights can be obtained usi
Eqs.~33!.

At the boundary between regions in Fig. 9, one of t
bounce weights vanishes continuously. In particular, t
means that the rules for the Heisenberg antiferromagnet
magnetic field approaches the rules in zero fieldcontinuously
ashb→0. This is to be contrasted to the symmetric soluti
A, Eqs.~32!, where the bounce probabilities approach 1/2
hb→0. Hence, the algorithmic discontinuity is indeed r
moved as the special deterministic solution at the isotro
point is recovered automatically with solutionB ~when e
50).

In Sec. V, the performance of simulations using solutio
A andB will be quantified in terms of calculated autocorr
lation functions. It will be shown that the new solutionB can
lead to autocorrelation times more than an order of mag
tude shorter than with solutionA. The improvements are
most dramatic for weak but nonzero fields and weak Is
anisotropies (D.1). In Sec. IV we will describe how the
directed loops also can be adapted to simulations in the p
integral formalism. Below we first briefly discuss the form
the detailed balance equations for more general Ham
nians.

C. General form of the directed-loop equations

The SSE operator-loop update with the heat-bath pr
abilities @18# has already been applied to several differe
systems, including spin systems withS.1/2 @35#, various
boson models@36–38#, as well as the 1D extended Hubba
model @40#. The directed-loop approach can also be eas
applied to a much wider class of models than theS51/2
XXZ model discussed in the preceding section, a
minimum-bounce solutions can be expected to lead to
nificant improvements in efficiency. We here briefly outlin
the general form of the directed-loop equations and their
lutions for a general two-body interaction.

When the operator-loop update is applied to models w
higher spins, boson or fermion models, it is clear that
simple notion of flipping a spin in theS51/2 XXZ model
must be extended to a change in the state at a vertex
where the final state is one out of several possible on

se
e
in

TABLE I. Nonzero bounce weights and minimum values ofe
for the different parameter regions of solutionB of the directed-loop
equations. The Roman numerals correspond to those in Fig. 9
have definedD65(16D)/2.

Bounce weights emin

I (D22hb)/2
II b25hb2D2 b2852hb2D2 0
III b25hb2D2 0
IV b25hb2D2 b385hb2D1 0
V b385hb2D1 (D22hb)/2
VI b352hb2D1 b385hb2D1 2hb2D/2
1-11
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Consider as an example a spin-1 model where a loop
change the state on a leg by one or two units of spin. Thi
simplified when the totalSz is conserved as then these d
ferent changes can be considered as twoindependentloop
updates. This is because changing the state on the exit le
two units of spin when the state on the entrance leg
changed by one unit, or vice versa, violates theSz conserva-
tion law. Thus, with such a conservation law the state cha
of the exit leg is uniquely determined given the state cha
at the entrance leg. For simplicity we will here consider on
those cases where this uniqueness holds, although this
no means a necessary condition.

In order to describe the general form of the directed-lo
equations for this type of general two-site interaction it
convenient to change the labeling somewhat from that u
in the preceding section. To define this new labeling, we s
by selecting a reference vertex~which can be any of the
allowed vertices! and label its weightW1. We then choose an
entrance leg and label this leg as leg 1, and then numbe
rest of the legs on this vertex 2,3, and 4. Distributing t
weight over all possible exit legs according to Eq.~28! gives

W15a111a121a131a14, ~34!

where we have labeled the weightsai j in the extended spac
by their entrance~i! and exit~j! legs. On changing the state
at both the entrance and exit legs one arrives at a new ve
If the entrance and exit legs are the same the vertex stay
same. Now label the weight of the vertex reached by exit
at leg i asWi . Thus if the exit was on leg 2 we would labe
that vertexW2 . W2 has a similar decomposition asW1,

W25a211a221a231a24, ~35!

where now the entrance is on leg 2 on the vertex wh
differs from vertex 1 by having changed the states at le
and 2. The weighta21 corresponds to the process where t
path enters at leg 2 and exits at leg 1. The states are cha
in the oppositeway to that when arriving atW2 from W1,
and hence the process is undoing the changes and we a
back atW1. From Eq.~26! it follows thata215a12. Now one
can asks the question of whether exiting at leg 3 or 4 yie
the same vertex type when starting fromW2 as it does start-
ing from W1. The answer to this is yes, because starting fr
W1 one would change the state at leg 1 and 3 while star
from W2 one would change the states at legs 2 and 3.
W2 differs fromW1 only by having different states at legs
and 2 and thus the state at leg 2 ischanged twicein opposite
directions resulting in the same configurationW3. The
weights are hence uniquely defined by this procedure,
one is guaranteed that the only vertices that are related by
detailed balance equations are those that can be reache
changing the state on the entrance leg together with the
on any exit leg of the reference vertex. The directed-lo
equations can therefore be written as
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S a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

D S 1

1

1

1

D 5S W1

W2

W3

W4

D , ~36!

where the matrix on the left-hand side is a real symme
434 matrix with all entries non-negative for a useful alg
rithm. The magnitudes of the diagonal elements determ
the bounce probabilities. This is the general structure of
directed-loop equations for two-site interactions. There a
in general, several such sets of equations, which can be
erated one by one by changing the reference vertex and
type of change at the entrance leg. The reference ve
should then of course be chosen among vertices that have
yet been generated starting from another reference verte
order not to generate the same equation sets several ti
Some of the different sets are typically identical to each ot
by symmetry, as in the case of theS51/2 XXZ model, where
there are eight sets falling into two classes. In that case
structure of the equations changes into 333 forms because
there are only three allowed exit possibilities for each e
trance leg. To explain this with an example in the sche
used here, we can consider the vertex with all spins down
the reference vertex. ThenW250 as this configuration cor
responds to the case where the lower legs (1 and 2)
flipped, resulting in a vertex with weight zero. This immed
ately implies that alla’s ~being all non-negative! with an
index 2 must be zero and so the result is that row 2 a
column 2 is taken out resulting in a 333 matrix. In general,
there can be a large numbers of 434 equation sets, some o
all of which reduce into 333 and 232 sets ~e.g., for
Hubbard-type electron models there are both 232 and 3
33 sets, but no 434 sets!.

Let us consider the 333 case in greater detail and as
when one can do without bounces, as we saw was possib
a region in parameter space of theS51/2 XXZ model dis-
cussed in the preceding section. To do this, it is convenien
first relabel the equations so thatW3>W2>W1. We then set
all the diagonal entries~the bounce weights! to zero and find
the region of differentW’s for which the equation set ha
strictly positive solutions. In this case the solution is uniq
as there are three equations and three unknowns and
easy to see that thea’s are positive only whenW3<W1
1W2, and hence one finds a directed-loop solution witho
bounces only when this condition is satisfied.

Allowing bounces, it is also easy to see that one can
ways do with only one bounce, the one that bounces off
vertex with the largest weight. IfW3 is the largest weight,
one can seta115a2250 and a335W32W12W2, which
gives a1250, a135W1, and a235W2. This means that the
probability for moving between the configurations with th
smallest weight is zero while that of moving from the large
weight configuration to the smaller ones is the ratio of t
smaller weight to the larger weight and unity for the reve
process. The bounce probability is unity minus the proba
ity for moving to the smaller weight configurations. A simila
analysis can be carried out for the 434 equation sets appea
ing for S.1/2 spin models and soft-core boson models.
1-12
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The equation sets involving larger matrices, as enco
tered when dealing with interactions involving more th
two sites, can also be studied in a similar manner. It sho
be pointed out, however, that there is nothing that guaran
a priori that the operator-loop update is ergodic~in combi-
nation with the diagonal updates!, for any solution of the
directed-loop equations. Ergodicity requires that all allow
vertices can be generated through a series of loop upd
and this is typically the case with two-particle terms~al-
though one could, in principle, construct models where i
not the case!. However, simple one-dimensional loops su
as those discussed here cannot always accomplish this a
when the interaction includes more than two particles, e
in the case of relatively simple models. The SSE method
recently been applied to anXY model with a standard two
spin interactionJ and a four-spin termK @48#. In that par-
ticular case, an ergodic operator-loop update could be u
for uJu.0, but for J50 another cluster-type update had
be carried out. In practice, a combination of the two upda
had to be used for largeK/J.

IV. PATH-INTEGRAL FORMULATION

In this section we will discuss how the directed loops c
be applied to the path-integral Monte Carlo method~PIM!
formulated in imaginary time. Such methods are known
world-line methods in discrete@9# or continuous@3,4# imagi-
nary time. The close relationships between the SSE and
representations of quantum statistical mechanics have
explored in previous works@47,43#. Here we will show that
also the directed-loop ideas can be almost directly transl
from SSE into the PIM formalism.

A. Construction of the path integral

We start by writing the partition function as

Z5Tr$e2bH%5TrH)
t51

L

e2DtHJ , ~37!

whereDt5b/L andL is a large integer. The Hamiltonian i
generally a sum of noncommuting pieces, and in order
deal with the exponential it is convenient to employ t
Suzuki-Trotter trick@6#. This involves dividing the Hamil-
tonian into several sets of terms, where all terms within a
are commuting while the sets themselves are noncommu
Because the Hamiltonian is multiplied by the small quan
Dt it is possible to split the exponential into a product
exponentials, each having one set in the exponent. The e
arising from this approximation vanish asDt→0 @6,20#.
Consider as an example theXXZ chain. Then the Hamil-
tonian can be divided into two sets, one involving the ope
tors that act on sites 2n and 2n11, while the other set
involves the operators acting on sites 2n11 and 2n12. It is
then possible to insert complete sets of states, which ca
chosen to be written in terms ofSz components, between a
the exponentials and the partition function can be writ
@7–10# as
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t51

L

^s t11ue2DtH2us t11/2&^s t11/2ue2DtH1us t&,

~38!

where s is a shorthand for a spin configuration in theSz

basis of all sites in the chain. The sum is over all possi
sets of spin configurations, two complete sets of states
each time stept, and the trace impliessL115s1. This is
called the checkerboard breakup, as one can visualize it
checkerboard pattern~see Fig. 10! where all the matrix ele-
ments are pictured as shaded plaquettes. This breaku
completely general and can also be used for high
dimensional lattices. Because each setH1 andH2 consists of
individually commuting terms it suffices to consider the i
teraction on one shaded plaquette only and the matrix
ments can easily be written down. Keeping only terms to fi
order inDt, one finds

W15^↑↓ue2DtHu↓↑&5^↓↑ue2DtHu↑↓&5Dt/2,

W25^↑↓ue2DtHu↑↓&5^↓↑ue2DtHu↓↑&511~C1D/4!Dt,
~39!

W35^↓↓ue2DtHu↓↓&511~C2D/42hb!Dt,

W45^↑↑ue2DtHu↑↑&511~C2D/41hb!Dt.

These matrix elements differ from the matrix elements~18!
in the SSE method only in that the Hamiltonian is multiplie
by the factorDt and the diagonal matrix elements also com
with the zeroth-order term of the exponential. The weightW1
comes with a minus sign, which here is omitted by implicit
performing ap rotation about theSz axis for spins on one
sublattice. This can be done whenever the lattice is bipar
One can of course also calculate the matrix elements~39!

FIG. 10. The checkerboard breakup of the space-time for a
chain with four sites with open boundary conditions.H1 has terms
acting on the links between site 0 and 1 and the link between si
and 3. H2 acts on the link between site 1 and 2. The shad
plaquettes show where the Hamiltonian acts.
1-13
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exactly, but since we will take the continuum limit here, it
sufficient to go to linear order inDt, where the similarity to
the SSE expressions are most evident.

In the ordinary world-line loop algorithm~for a review
see Ref.@49#!, two loop segments are assigned to each
every shaded plaquette in a stochastic way. The sha
plaquettes are corner sharing so that when all sha
plaquettes have been assigned segments one can ide
closed loops. Given that the probabilistic rules for the assi
ment of loop segments for each shaded plaquette follows
analogy of Eqs.~26! and ~28!, one can flip a loop with any
probability. In particular, one can pick a random site and
random imaginary time and flip the loop that includes t
point with unit probability. One can also turn this around a
first, before any loop is constructed, pick a random poin
space-time and then construct the loop starting at this p
and flipping spins with unit probability as the loop is bein
constructed.

When assigning loop segments to each shaded plaq
one needs two loop segments for each plaquette in orde
fill the lattice completely. Then many configurations can
reached, as one should be able to independently flip s
along one or both the loop segments. Thus one gets relati
many constraints of the type~26!. This is illustrated in Fig.
11. In fact, in zero field there are just as many equations
unknowns, and this set has only non-negative solutions in
XY-like case,21<D<1. In a magnetic field there is on
additional equation and the set does not have any soluti
Within the standard loop algorithm this is repaired by intr
ducing additional processes which ‘‘freeze’’ loops togeth
i.e., if spins on one loop are flipped, spins on any loop froz
together with the first one will also be flipped. This increas
the number of unknowns in the equation set, making a s
tion possible. While we are not aware of any systematic st
ies of the effects of the freezing process, it tends to freeze
loops together, resulting in the trivial spin update where
spins are flipped. It is therefore not very effective. Howev
in the extreme Ising limit the freezing is responsible for t
fact that the loop algorithm becomes equivalent to
Swendsen-Wang algorithm, and hence the freezing of lo
has some merits.

Another method to make the loop algorithm work in
magnetic field is to apply the field in thex direction, thereby
changing the matrix elements and introducing a minus s
Using the concept of merons, the resulting sign problem
be solved@21,22#, but the simulation algorithm is not ver
efficient for large systems. If one relaxes the condition t

FIG. 11. Loop and spin configurations which should have
same weight when allowing the loops to be flipped independen
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the loops should be flipped with unit probability and inste
chooses weights such that the flipping probability is ma
mized, it is possible to find rules that work very well
extreme fields@19#. However, this success at extreme fiel
must be regarded as a lucky circumstance and is not ge
ally valid for lower fields. Yet another and perhaps the si
plest loop method in the presence of a magnetic field is
construct the loops as if the field was absent and then inc
a Metropolis decision whenever attempting to flip a loop th
changes the magnetization. This method is, however, v
ineffective @44# @except at extremely weak fields;h/J
&1/(bN) @25## as is to be expected, as it does not take in
account the actual physics of the model which is the com
tition between the magnetic field and the exchange ener

None of the above methods for treating external fields
proven as useful in practice as the SSE operator-loop a
rithm @18#. The worm algorithm for path-integral simulation
in continuous imaginary time@3# shares some important fea
tures with the SSE operator loops~specifically, there is an
analog to the backtracking feature! and has also been use
successfully. However, its autocorrelation times seem to
much longer~as can be seen in comparing our results in S
V with those presented in Ref.@41#!. We will discuss differ-
ences between the procedures used to construct dire
loops and worms in Sec. VII. Because the directed loops
a further improvement of the SSE approach, it is natura
investigate if these concepts can also be implemented in
path-integral formulation.

B. Directed loops in the PIM

To implement the notion of directed loops in the pat
integral formulation we note the similarities of the vertices
the SSE and the shaded plaquettes in the PIM. We can i
tify a corner of a shaded plaquette with a vertex leg in
SSE. Both have a spin attached, and each corner~leg! is
connected to another corner~leg! on another shaded
plaquette ~vertex!. To construct a directed loop, we firs
choose a random entrance corner at a random sha
plaquette. Then, depending on the spin configuration,
choose an exit corner and place a directed-loop segmen
tween the entrance corner and the exit corner. The spins
nected by the loop segment are flipped with unit probabil
The spin on the exit corner is then the entrance spin of
next shaded plaquette and the process continues until
loop closes. In contrast to the usual loop algorithm there
no notion of freezing loops, but there is the necessary~at
least in some regimes! process of bouncing, where the ‘‘loo
head’’ backtracks some distance along its path and reve
spin flips.

Because of the relation between the SSE vertices and
shaded plaquettes, and the similarity of the matrix eleme
~30! and ~39!, one can immediately write down the detaile
balance equations for the PIM using Fig. 8 and interpret
the vertices as shaded plaquettes. As in the SSE, there
eight sets of directed-loop equations which are reduced
two by symmetries. Substituting the plaquette weights a
expressing the extended configuration weights in terms
the bounce weights, we get

e
.

1-14
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c511S C2
1
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2

hb

2 DDt1
b12b22b3

2
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a85S 11D

4
2

hb

2 DDt1
2b182b281b38

2
, ~40!

b85S 12D

4
1

hb

2 DDt1
2b181b282b38

2
,

c8511S C2
1

4
1

hb

2 DDt1
b182b282b38

2
.

Non-negative weights are required to avoid sign proble
This implies that there are regions where bounces mus
nonzero. In fact the same algorithmic phase diagram
shown in Fig. 9 applies here, with the exception that in t
case there are no restrictions onC ~or e5C2D/42hb) as it
always occurs multiplied byDt in a combination where
there also is the zeroth-order term of the exponential. In f
in the construction of the loops in continuous imagina
time, where only quantities to orderDt matter, the value of
C drops out completely as we will considerratios where it
turns out thatC does not occur to orderDt. Thus in contrast
to the SSE, there is nothing gained by adjustingC in the
path-integral representation. Whenever in a region of par
eter space where bounces are needed, one can choose
to be the minimum values as summarized in Table I, with
only modification that the bounce weights should be mu
plied byDt. As in the SSE method the actual probability f
choosing an exit corner, given an entrance corner and a
configuration on a shaded plaquette, is obtained by divid
one of the weights above by the appropriate matrix elem
from Eqs.~39!.

In the limit Dt→0 this method might seem very slow a
one needs to make a choice for every plaquette of wh
there are infinitely many in this limit. However, one can u
the method employed in the continuous-time implementa
of the standard world-line loop algorithm@4#, which is based
on the fact that thec,c8 weights are of order unity. Thec,c8
weights describe the process of continuing the loop const
tion in the imaginary time direction on the same site. Be
of order unity means that this will be the dominating proce
The other processes are multiplied byDt and will therefore
occur much less frequently.

To illustrate in detail how a loop is constructed in the lim
Dt→0, consider as an example the situation shown in F
12. This figure shows the full imaginary-time spin config
rations for four sites. The dotted~solid! lines correspond to
spin down~up!. The figure can be understood as the lim
Dt→0 of Fig. 10. The loop construction consists of movi
the loop head. This motion begins at a random site and t
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in a random direction. In Fig. 12 the starting point and
rection is marked by an arrow. From the arrow at timet0 to
the timet1, the spin configuration on site 1 and its neighbo
0 and 2 stay unchanged. At timet1 there is a spin-flip pro-
cess exchanging the spins on sites 1 and 2. This means
half of the 2t/Dt, t5t12t0, shaded plaquettes~the factor
2 is from the fact that there are two neighbors! between the
starting pointt0 andt1 are of the typeW2, while the other
half is of the typeW3. The loop head will therefore ente
alternately the lower left corner on shaded plaquettes hav
weight W2 and the lower right corner on shadedW3
plaquettes. On exiting the shadedW2 plaquette, one of the
three processesa8, b28 , or c8 can happen, while for each o
the W3 plaquettes, one of the processesb, c, or b3 can hap-
pen. Thec andc8 processes are by far the most probable
they are of order unity while the others are of orderDt.
Therefore until one of the other processes of orderDt oc-
curs, the loop head will just continue its motion in the u
ward direction on site 1. The probability for the first occu
rence of one of the processes of orderDt within an interval
Dt after timet8 is given by

P~t8!Dt5S c8

W2

c

W3
D t8/DtS 12

c8

W2
112

c

W3
D

5e2(a01a2)t8~a01a2!Dt, ~41!

where in the last equality we have taken the limitDt→0,
and the quantitiesa i are finite asDt→0;

a05
b1b38

W3Dt
, ~42!

a25
a81b28

W2Dt
, ~43!

where the subscript ona indicates which neighbor is consid
ered. Recall that by definitionW35b1c1b38 and W25a
1b21c. Thus, with a random number generator one c
generate ‘‘decay’’ times according to the distribution~41!
and take the random decay time generated as the point w
one of the processesa8, b28 , b, or b3 occurs. If the decay

FIG. 12. Left: Continuous imaginary time construction of
loop. This figure can be understood as the limitDt→0 of Fig. 10,
dotted ~solid! lines correspond to spin down~up!. Starting at an
arbitrary site and time~indicated by the arrow! a probability of
‘‘decay’’ dependent on the spin states of the neighbors is calcula
and the loop head is moved to the point of decay. Right: A result
a8 decay at a timetd where the segment up to the decay h
changed orientation and a new arrow is placed.
1-15
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time so generated is bigger thant12t0 the loop head can be
moved directly all the way to timet1, while flipping all the
spins on site 1 up to timet1. There it enters a shade
plaquette from the lower left corner. This plaquette h
weight W1, and the possible choices for exit corners a
determined by the ratio of the weightsb18 , a8, andb8 to W1

which are all finite asDt→0. One can hence just use th
random number generator to select the exit corner. Gi
that the outcome of this choice is, for instance,a8, the loop
head would move to site 2 while flipping spins, whic
changes the shaded plaquette of typeW1 to be of typeW2.
The process would then continue in the downward direct
on site 2. If the decay happens beforet1, the loop head
moves to the decay point while flipping spins and then
choice between the possible decay types is made. Given
a decay occurs, the choice of different types of decay
again independent ofDt as only the ratios matter. As a
example, the probability of selectinga8 is a8/(a81b281b
1b3). This type of process is illustrated in Fig. 12. Havin
made the choice, the process continues, and the loop c
when the loop head reaches the original starting point.

In practice it is convenient to store the spin-flip events
a doubly linked list for each lattice site so that spin flips c
be added and removed efficiently. The main computatio
cost is then to search the site of the loop head and its ne
bors for spin transitions.

In zero magnetic field the directed PIM loop algorith
proposed here corresponds exactly to the single-cluster
mulation of the ordinary loop algorithm for21<D<1
@4,16#. This can be seen by setting all bounce weights to z
andC52D/4, and then comparing our weights to Eq.~39!
in Ref. @49#. In the language of the usual loop algorithm, o
weight a corresponds to horizontal breakups,b to diagonal
breakups, andc to vertical breakups. The general algorith
with bounces is more similar to the worm algorithm@3#, but
the processes by which the worm is propagated thro
space-time are different and do not correspond to a solu
of our directed-loop equations. This will be further discuss
in Sec. VII. In Sec. V we will demonstrate that the directe
loop processes, especially with solutionB ~in both SSE and
PIM implementations! lead to much more efficient simula
tion algorithms.

V. AUTOCORRELATIONS

Autocorrelation functions provide quantitative measu
of the efficiency of a Monte Carlo sampling scheme in ge
erating statistically independent configurations. For a qu
tity Q, the normalized autocorrelation function is defined

AQ~ t !5
^Q~ i 1t !Q~ i !&2^Q~ i !&2

^Q~ i !2&2^Q~ i !&2 , ~44!

wherei and t are Monte Carlo times, for which we will us
the unit of 1 MCS~as defined in Sec. II D in the case of SS
and with an analogous definition for the PIM!. The brackets
indicate the average over the timei. Asymptotically, the au-
tocorrelation function decays exponentially as;e2t/tQ,
where the asymptotic autocorrelation timetQ is given by the
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slowest mode of the simulation~the transition matrix of the
Markov chain! to which the observableQ couples. For short
times, the behavior is typically different for different quan
ties, even iftQ is the same. The integrated autocorrelati
time is defined according to

t int@Q#5
1

2
1(

t51

`

AQ~ t ! ~45!

and is the autocorrelation measure of greatest practical ut
@49#.

In this section we will present integrated autocorrelati
times for some important quantities in several regions of
parameter space of the anisotropic Heisenberg model~1!. We
cannot present a completely exhaustive study, however, s
in addition to the fieldh and the anisotropyD, the autocor-
relations also depend on temperatureT/J5b21 and the lat-
tice size. In addition, in SSE simulations the autocorrelatio
depend on the constante in the matrix elements~18!. One of
our aims here is to find the optimum value ofe. We compare
simulations with the original general~nondeterministic! SSE
operator-loop update@18# ~solutionA) and the new solution
of the directed-loop equations discussed in Sec. III B~solu-
tion B). We also present some results obtained with solut
B in continuous-time PIM simulations.

The physical quantities that we will focus on here are
magnetization

M5
1

N (
i 51

N

^Si
z&, ~46!

the uniform magnetic susceptibility

xu5
b

N K S (
i 51

N

Si
zD 2L , ~47!

the staggered susceptibility

xs5
1

N (
k,l

~21!xk2xl1yk2ylE
0

b

dt^Sk
z~t!Sl

z~0!&, ~48!

and the spin stiffness

rs5
]2E~f!

]f2 , ~49!

whereE(f) is the internal energy per spin in the presence
a twist f in the boundary condition. These quantities a
their SSE estimators have been discussed in detail in
@42#.

We note again that the definition of an MCS in the gene
SSE operator-loop scheme involves some degree of arbit
ness, as was discussed in Sec. II D. There is also a statis
uncertainty due to the statistical determination of the num
Nl of operator loops constructed per MCS. In all the S
simulations discussed here,Nl was adjusted during the
equilibration of the simulation so that on an average, 2M
vertex legs~excluding bounces! were visited in each MCS
The maximum expansion powerM was increased if neede
1-16
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after each equilibration MCS, so thatM51.25nmax, where
nmax is the highest powern generated so far in the simula
tion. The statistical uncertainties inNl andnmax imply some
fluctuations in the definition of an MCS. This, in turn, resu
in fluctuations in the results for the integrated autocorrelat
times that can be larger than their statistical errors. Typica
these fluctuations are only a few percent, however, and
hence not problematic.

In the PIM simulations, we adjustedNl so that on average
the total length~again excluding bounces! of all Nl loops in
a MCS is equal tobN, the space-time volume. The defin
tions of an MCS in SSE and PIM simulations are hen
similar but not identical. One reason why it is difficult t
construct exactly comparable MCS definitions in the S
and the PIM is that the diagonal single-operator updates
ried out separately in SSE are in effect accomplished du
the loop construction in the PIM. Another difference is th
there is no adjustable constante in the PIM. In Ref.@44# an
alternative approach of normalizing the autocorrelation tim
by the actual number of operations performed was us
However, also this definition may be ambiguous since it
pends on the details of the implementation, and there are
differences in the actual CPU time consumed, depending
the mix of operations~integer, floating point, boolean, etc.!.
These issues are not of major significance in the calculat
we present below, but should nevertheless be kept in m
when comparing autocorrelations for the two methods.

The reminder of this section is organized as follows.
Sec. V A we first discuss SSE simulations of the 1D Heis
berg model in an external field. In Sec. V B we consider S
simulations of 2D systems in fields and with anisotropi
PIM results for both 1D and 2D systems are presented
Sec. V C. We have also studied several isotropic system
critical points and extracted the dynamic exponent of
simulations. We discuss these results in Sec. V D.

A. SSE simulations in 1D

When the constante50, the vertices with all spins up o
all spins down are excluded from the SSE configurat
space whenh50, since the corresponding matrix elemen
~18! then vanish. Whenh.0, the all-up vertex is again al
lowed. With e.0 all vertices are allowed and the propag
tion of the loop is then more random. We here begin
studying how the simulation efficiency depends one in the
case of the 1D Heisenberg model (D51) in a field.

Figures 13 and 14 show the field dependence of the i
grated autocorrelation time of the magnetization and
staggered susceptibility in simulations of chains with 64 s
at inverse temperatureb516. As shown in the inset of Fig
13, at theT50 saturation field (hsat/J52 in 1D!, the mag-
netization is about 10% from saturation at this temperatu
The staggered susceptibility is peaked ath50, reflecting the
fact that the staggered spin-spin correlation function for s
components parallel to the external field is dominant only
the absence of a field. In the case of solutionA simulations,
the effect of increasinge from 0 is an initial small drop in
t int@M # for fields h&0.8 and a small increase at high
fields. There is a substantial increase int int@xs# for weak
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fields. Ase is further increased there is a small increase
t int@M # also for weak fields. In contrast, with solutionB,
increasinge has favorable effects on both autocorrelati
times up to the higheste studied here. The effects are ve
small for high fields, however, since there the autocorrelat
time is already close to its lower bound 0.5 whene50. For

FIG. 13. Integrated autocorrelation times vs external field
the magnetization of anN564 Heisenberg chain atb516. The
upper and lower panels show results of simulations using solut
A andB, respectively. Several values of the constante were used, as
indicated by the legends in the lower panel. The inset shows
magnetization itself.

FIG. 14. Integrated autocorrelation times vs external field
the staggered susceptibility of anN564 Heisenberg chain atb
516. The inset shows the staggered susceptibility.
1-17
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all e values, the autocorrelation times are considera
shorter with solutionB than with solutionA. This shows that
the strategy of decreasing the probability of the bounce p
cesses in the operator-loop construction is working. The
fects are particularly pronounced at and close toh50, where
the shortest autocorrelation times with solutionB are only
about 10% of those with solutionA.

In Fig. 15 we show the probability of bounces in th
simulations (Pbounce is the fraction of bounces, includin
length-0 loops!. The behavior reflects that of the autocorr
lation times. With solutionB, Pbounce decreases monoton
cally with e for all fields, whereas with solutionA the be-
havior is nonmonotonic. In solutionB, the vanishing of
Pbounce both in the limits h→0 and h→hsat/J ~at T50)
follows by construction, as discussed in Sec. II. With so
tion A the bounce rate is large in these limits.

For weak fields, a smalle.0 has favorable effects on th
magnetization autocorrelations both with solutionsA andB.
In the case of solutionB, botht int@M # andt int@xs# continue
to decrease also whene'1, as seen in Figs. 13 and 1
Nevertheless, it is not practical to use a very largee since the
average expansion order^n& ~and hence the operator s
quence sizeM ) has a contributionebNb , and there is a
similar increase in the number of operations needed to c
out 1 MCS. However, Figs. 13 and 14 indicate that eve
small value (e;1/4) gives a significant improvement of th
magnetization autocorrelations relative toe50 simulations.
We find that this behavior persists also for larger syst
sizes and lower temperatures. Figure 16 showst int@M # for
different system sizesN at inverse temperatureb5N/4, us-
ing both e50 and 1/4. The advantage ofe51/4 becomes
more pronounced with increasing system size. ForN5128
the maximumt int@M # is reduced by about 50% for bot
solutionsA andB. The relative advantage of solutionsB over

FIG. 15. Bounce probabilities in solution-A and -B simulations
of an N564 Heisenberg chain atb516, using different values
of e.
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A is again the most dramatic in the limith→0. In both
solutions, the autocorrelation time is rather strongly peak
with the peak position for the largest systems at sligh
higher fields for solutionB. The reason for this type of field
dependence is not clear and deserves further study. It ca
be ruled out that a still more efficient directed-loop soluti
could be found at intermediate field strengths~which would
imply that minimizing the bounce probability does not ne
essarily lead to the most efficient algorithm!.

When the temperature becomes small compared to
finite-size gaps in the system, a step structure in the mag
tization versus field curve can be clearly resolved, as
shown in Fig. 17~a!. These steps are also reflected in t
autocorrelation time, as shown in Fig. 17~b!. There are sharp
maximas in the regions where the magnetization switc
between two values. Exactly atT50, the autocorrelation
function ~44! for the magnetization is ill defined, since the
are then no fluctuations inM on the magnetization plateau
However, we find that the limitT→0 is well behaved in the
simulations. Exactly at the switching fields,t int@M # appears
to diverge, however, showing that tunneling between the
equal-probability magnetization sectors becomes rare. Fig
17~c! shows the average size of the operator loops. There
maxima at the switching fields, with the peak heights gro
ing as the temperature is lowered. On the plateaus, the
size does not change much withb. A divergence of the av-
erage loop size withb at the switching fields can be ex
pected, since in order for the magnetization to change,
loop has to wrap around the system in the SSE propaga
~or imaginary time! direction, which is of length;b. The
convergence of the average loop size on the plateaus ca
understood on the same grounds. Apart from the oscillatio
there is also a significant increase in the loop size as the
increases.

FIG. 16. Integrated autocorrelation times for the magnetizat
in simulations of chains of different lengthsN at inverse tempera-
ture b5N/4. The inset shows the magnetization.
1-18
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Distributions of loop sizes atb5128 are shown in Fig. 18
for field strengths corresponding to magnetization plate
(h/J50 and 0.14) and switching fields (h/J50.07 and
0.21). At h50, there are no bounce processes and this
pears to be reflected as a qualitatively different loop s
distribution than forh.0, with no very large loops and
larger probability of sizes in the range 282211. For all fields,
there is quite a sharp crossover beyond which the probab

FIG. 17. Magnetization vs field of anN564 chain~a!, the cor-
responding integrated autocorrelation time~b!, and the average siz
of the operator loops~c!. Solid and open circles show results atb
564 and 128, respectively. The simulations were carried out w
solutionB of the directed-loop equation withe51/4.

FIG. 18. Loop size distribution forN564 chains atb5128 and
different field strengths~solutionB simulations withe51/4). P(m)
is the cumulative probability of loop sizes between 2m (0 for m
50) and 2m1121.
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becomes very small. Problems with loops that do not cl
@40,44# are therefore absent in this case. We did not have
impose any maximum size during the loop construction
any of the simulations discussed in this paper.

In the studies of the 1D Heisenberg model in a field th
we have presented here, the new solutionB is clearly better
than solutionA, although the difference is very large only fo
h close to 0~but significant also forh→hsat). Already with
solution A the autocorrelation time for the magnetization
very short compared to other approaches. With
continuous-time worm algorithmt int@M # is close to 100
even for system sizes as small asN510 andN520 @41#.

B. SSE simulations in 2D

For the 2DXXZ model ~on periodicL3L lattices!, we
have calculated autocorrelation times versus the fi
strength in systems with isotropic couplings (D51, 0<h
<hsat54J), Ising-anisotropic systems in zero field (D>1,
h50), and theXY model in zero and finite field (D50,
h/J50,1/2).

Figure 19 shows the field dependence of the autocorr
tion time for the magnetization ofL516 andL532 systems
at inverse temperatureb58. With solution A at e50, a
sharp drop in the autocorrelation time can be noted imme
ately whenh becomes nonzero. It is not surprising that t
algorithm ath50 is inefficient, since the only processes o
curring here are the switch-and-reverse and the bounce~see
Fig. 3!. The bounce probability is high if it is not exclude
‘‘by hand,’’ which would yield the much more efficient de
terministic loop rules. With the bounce included, the act
closed loop is still deterministic, but during its constructio

h

FIG. 19. Integrated autocorrelation times for the magnetizat
in simulations of the 2D Heisenberg model in a magnetic fie
using solutionsA ~circles! and B ~squares! and constantse50
~filled symbols! and 1/4~open symbols!. The inset shows the mag
netization~the differences inM betweenL516 andL532 are very
small at the inverse temperatureb58 used here!.
1-19
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the propagating open end oscillates randomly back and f
along the de facto deterministic trajectory until the loop
closes or is annihilated via backtracking all the way to
starting point. Onceh is nonzero, the loops become man
festly nondeterministic~since an additional vertex path be
comes allowed! and apparently, as seen in Fig. 19, even fo
very smallh the simulation is much more efficient. This is
contrast to the 1D case~see Fig. 16!, where solutionA with
e50 is reasonably efficient even forh50 andt int@M # in-
creases whenh is turned on. This difference between the 1
and 2D simulations may be related to the loop sizes~al-
though the full explanation probably is more complex and
related to the different physical properties of the syste
which are reflected in the loop structures!. In one dimension,
the loops are relatively small, and for a smallh a large frac-
tion of the constructed loops are then identical to the de
ministic ones ath50. In two dimensions the loops are muc
larger, and then even a smallh can allow most paths to
‘‘escape’’ from theh50 deterministic loop trajectories s
that there are not as many propagations back and forth a
the same path as ath50. Using a nonzeroe also makes the
path nondeterministic, and Fig. 19 shows very favorable
fect of usinge51/4 in solutionA at h50. For higher fields,
there are only very minor advantages of a nonzeroe, which
is also in contrast to the 1D case. As in the 1D case, solu
B reduces the autocorrelation times very significantly
weak fields, and substantially also at higher fields. The
ferences betweene50 and 1/4 in solutionB are small at all
fields, however.

Figure 20 shows autocorrelation times for the stagge
susceptibility of Ising-anisotropic systems in zero field atb
58. SolutionB performs significantly better than solutionA
for D&1.5, but only marginally better at higherD. In this

FIG. 20. Integrated autocorrelation times for the staggered
ceptibility in simulations of the 2D anisotropic Heisenberg mode
b58. The symbols indicate solutionsA, B, and e50,1/4 in the
same way as in Fig. 19.
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systeme50 implies that the closed loops arede factodeter-
ministic for all anisotropies~the only allowede50 vertex
processes are again the bounce and the switch-and-reve!.
However, the symmetry of flipping and flipping back loops
broken whenD.1 and thede factofixed structure of the
closed loops is not taken into account during their constr
tion, neither with solutionA nor B ~doing this would corre-
spond to neglecting the bounces, constructing a determin
loop, and then takingD into account in a Metropolis accep
tance probability for actually flipping the loop, in a wa
analogous to what has been done with the standard wo
line loop method for weak magnetic fields@25#!. SolutionB
minimizes the bounce probability and hence leads to m
directed paths and, therefore, closing of the loops in few
steps~and hence a larger number of completed loop in
MCS as defined here!. Bounce probabilities are shown in th
upper panel of Fig. 21. Whene.0 the loops become mani
festly nondeterministic, leading to significantly reduced a
tocorrelation times. The bounce probabilities are also
duced, but for both solutions,Pbouncestill becomes large asD
is increased. Nevertheless, the autocorrelation times cont
to decrease. We do not expect this to be the case asD→`,
where the model at fixedb reduces to the classical Isin
antiferromagnet at temperatureT→0. In that limit, a classi-
cal single-spin flip would correspond to flipping spins on
SSE vertices on a given site~the number of which scales a
bD), which would be a slow process since the bounce pr
ability is high. The lower panel of Fig. 21 shows that th
average loop size becomes very small for largeD. The algo-
rithm clearly does not reduce to a classical Swendsen-W
or Wolff cluster algorithm asD→` ~in the classical algo-
rithms the cluster size→N as T→0). However, at higher
temperatures the algorithm could easily be supplemen
with a cluster update which corresponds exactly to the c

s-
t

FIG. 21. Upper panel: bounce probabilities in simulations o
32332 anisotropic Heisenberg model atb58. Lower panel: the
average loop size in the same simulations.
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QUANTUM MONTE CARLO WITH DIRECTED LOOPS PHYSICAL REVIEW E66, 046701 ~2002!
sical one~a multispin generalization of the flips of free spin
where clusters of spins connected to each other by opera
in SM can be flipped simultaneously without changing t
weight if e50 andh50). As in the standard world-line loop
algorithm@49#, it is also possible to include loop freezing
the deterministic loop algorithm.

Note that there is essentially no structure in the solutioB
autocorrelation time fore51/4 in Fig. 20, in spite of the fac
that the scan over anisotropies should cross an Ising-
transition to an ordered state. AtD53 the antiferromagnetic
order is already at'97% of the maximum~classical T
50) value, as can be inferred from the insets of Fig. 20
using Eq.~48!.

For the XY model (D50), the directed-loop equation
have a solution without bounces for all fields up to the sa
ration field. We find that the resulting algorithm is very ef
cient, with autocorrelation times smaller than 1 for all syst
sizes and temperatures that we have studied. Figure
shows results for the spin stiffness as a function of temp
ture for zero field as well as ath/J50.5. The corresponding
autocorrelation times are peaked around the Koster
Thouless~KT! transition temperature but do not grow wi
the system size. The KT transition in theh50 system has
been studied to high accuracy using a continuous-t
world-line loop algorithm, with the resultTKT /J'0.342
@24#. Our h50 data are in complete agreement with the p
vious results. We find that the data forh50.5 shown in Fig.
22 can be collapsed onto theh50 data ifT andrs are both
scaled by the same factor ('1.05 for h/J50.5), in accord
with the universality of the transition. More extensive resu
for this model will be presented elsewhere.

C. PIM simulations

Next we will show some results for autocorrelation tim
obtained using the PIM implementation of the directed-lo

FIG. 22. Spin stiffness of theXY model at zero external field
~upper panel! and ath/J50.5 ~lower panel!. The insets show the
corresponding integrated autocorrelation times. SolutionB with e
5emin ~see Table I! was used in all cases.
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algorithm. To make a reasonable comparison with the au
correlation times for the SSE, we will also define a MCS
the PIM so that it includesNl loops.Nl is determined such
that on average the total path length, excluding the first p
segment immediately following each bounce, of allNl loops
in an MCS is equal to the space-time volumebN ~in the
PIM, each path segment has a length in imaginary time
contrast to the SSE where the steps are just counted!. This
definition is chosen so that it corresponds reasonably clos
the definition used in the SSE. However, it could be argu
that a better definition of the total path length would be
add all the path segments; but instead of excluding the s
ment immediately following a bounce, one would subtra
the part of the path immediately following a bounce th
overlaps with the path segment preceding the bounce~with
special care taken for consecutive bounces!. This would
more accurately take into account the fraction of spins ac
ally flipped. We have here used the first definition of t
MCS as it corresponds more closely to how we define
MCS in the SSE method~where a different treatment of th
bounces could of course also be implemented—see
II D !.

Generally speaking the computer implementation of
PIM is more complex than SSE, as it is always necessar
keep track of the spin states on neighboring sites in the P
This is not required in the SSE formulation, where the v
tices contain all the information needed. Therefore our co
puter code for the PIM is not as efficient as the SSE code
generating a single MCS, and so we will be content in t
section to show just a few PIM autocorrelation results.
solutionA of the directed-loop equations was already sho
above to be much less effective than solutionB, we will in
this section just show results for solutionB.

Figure 23 shows the integrated autocorrelation tim

FIG. 23. Upper panel: integrated autocorrelation times vs ex
nal field for the magnetization~solid circles! and staggered suscep
tibility ~open circles! in PIM simulations of anN564 Heisenberg
chain atb516. Lower panel: bounce probability vs external field
the same simulation.
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t int@M # and t int@xs# for a 64-site Heisenberg chain (D51)
at inverse temperatureb516 as functions of the magneti
field. Comparing the results in Figs. 13 and 14 with the SS
it is seen thatt int@M # is comparable to thee51 case while
t int@xs# is more similar to thee50 curve, except close to
h50, where it also behaves more like thee51 case. The
lower panel of Fig. 23 shows the field dependence of
bounce probability.Pbounceis defined here as the number
bounces divided by the total number of times the path bu
ing changes, either by moving to a neighbor site or by b
tracking. This measure is not directly comparable to the d
nition in the SSE case, as the movesc and c8—where the
path continues on the same site—are not counted in the
nominator ofPbounce ~they are infinitely many in the PIM!.
Nevertheless, the general behavior ofPbounceversush is the
same for the two methods.

In Fig. 24 we have plottedt int@M # as a function of mag-
netic field for different chain sizesN. In all casesb5N/4. As
in the SSE case~Fig. 16! we see an increase int int@M # with
system size for small to intermediate fields. However,
maximum PIM autocorrelation times are about 50% sma
than in the SSEe51/4 case.

We have also carried out simulations of the 2D Heis
berg model using the PIM. In Fig. 25 we show results
t int@M # for a 16316 lattice atb58. Here the behavior is
almost identical to the SSE results shown in Fig. 19, wh
there is only a small dependence one.

From these examples it can be seen that the PIM gene
has shorter autocorrelation times than SSE in cases wher
SSE results show a significant dependence on the constae.
In some sense the PIM corresponds to thee→` limit of
SSE, as in this limit the continue-straight processes a
dominate the loop construction in SSE. In cases where
SSE autocorrelations converge slowly to theire5` limit,
the PIM approach may hence be more efficient~since in SSE
the computation time for 1 MCS grows linearly withe in this
limit !. However, in assessing a method’s efficiency o
should also take into account the cost of performing a sin
MCS. This of course depends heavily on the actual comp

FIG. 24. Field dependence of the integrated autocorrela
times for the magnetization in PIM simulations of chains of diffe
ent lengthsN at inverse temperatureb5N/4.
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implementation of the directed-loop algorithm. That is, wh
kind of data structures are used to represent the spin
vertex configurations, what kind of search algorithms a
used for finding spin states at a given time in the PIM, e
While we do not attempt to compare the PIM and SSE in t
respect here, it is quite clear that it is often easier to fin
fast and effective implementation for the SSE than for
PIM. We also note that the convergence to thee→` limit in
the SSE is relatively fast in all cases we have studied so
The convergence appears to be slowest in 1D, but even t
the reduction of the autocorrelation times becomes small
yond e51, where they are similar to the PIM autocorrel
tions.

D. Dynamic exponent

An interesting question is how the autocorrelation tim
diverges with the system size in simulations at a criti
point. The 1D Heisenberg model ath50,T50 exhibits
power-law (1/r ) decay of the staggered spin-spin correlati
function and is hence a quantum critical system@50#. We
have studied the integrated autocorrelation time for the s
gered spin susceptibility in this model as the system sizeN is
increased and the inverse temperatureb5N/4. The stag-
gered susceptibility should couple to the slowest mode of
simulation, and its autocorrelation time is therefore expec
to diverge asymptotically according to a power law

t int@xs#;bz, ~50!

wherez is the dynamic exponent of the simulation. Note th
it is essential here thatb andN are taken to infinity at a fixed
ratio ~as the physical dynamic critical exponent relati
space and imaginary time is 1). It is interesting to comp
SSE simulations with solutionB at differente values~we do
not consider solutionA here since it is much less efficien
than solutionB). It is also interesting to compare the tw
possible ways of flipping the loops whene50. At h50,e
50, solutionB reduces to the deterministic operator loo
@18#. As discussed in Sec. II D, instead of constructing

n FIG. 25. Integrated autocorrelation times~PIM! vs external field
for the magnetization of a 16316 Heisenberg square lattice a
b58.
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QUANTUM MONTE CARLO WITH DIRECTED LOOPS PHYSICAL REVIEW E66, 046701 ~2002!
fixed number of loops per MCS at random, all loops can th
be constructed and flipped independently of each other w
probability 1/2. This is analogous to the Swendsen-Wa
@46# algorithm for the classical Ising model. For the Isin
model, it is known that it is more efficient~i.e., z is smaller!
to construct the clusters one by one using the Wolff al
rithm @45#.

In Fig. 26 we show the results of solutionB simulations
with e50 and 1/4 along with the results frome50 simula-
tions, where all clusters were constructed. The autocorr
tion times of the twoe50 simulations are very similar, bu
for large systems, marginally shorter when all clusters
constructed. Hence, here there is no advantage in const
ing the clusters one by one. This is most likely related to
fact that in order to change the loop structure in the S
simulations ath50,e50, diagonal updates also have to
carried out. In the scheme used here, diagonal updates
only performed at the beginning of each MCS, and hence
same loop can be constructed several times in 1 MCS if t
are constructed at random. It is then more efficient to c
struct all loops once. In order to achieve an advantage sim
to the Wolff algorithm, one would have to construct a ne
scheme for the diagonal updates, which certainly could
possible but which we have not yet attempted. As in
other cases we have discussed above, there is a signifi
improvement whene51/4 is used in solutionB. However,
the dynamic exponent appears to be the same in all ca
z'0.75. In Fig. 26 we also show PIM results. It is clear th
the autocorrelation times here are significantly shorter,
most likely the dynamic exponent is the same as in SSE.
shorter PIM autocorrelation times are consistent with the
results shown above in Secs. V A and V C, and clearly
could also reduce the SSE autocorrelations by increasine
further.

In 2D, a well-studied quantum critical system is th
Heisenberg model on two coupled layers~bilayer!, with in-
traplane couplingJ and interplane couplingJ' @51#. The T
50 antiferromagnetic long-range order in this model va
ishes at a critical interplane coupling (J' /J)c'2.525 @28#.

FIG. 26. Autocorrelation times for the staggered susceptibi
of the isotropic Heisenberg chain atb5N/4 obtained in SSE and
PIM simulations with solutionB. The dashed line has slope 0.75
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Some autocorrelation results for both SSE and PIM simu
tions of this model atJ' /J52.524 have been presented r
cently @44# and indicate that the dynamic exponentz'0 in
both methods. Our most recent simulations indicate t
(J' /J)c'2.5225, i.e., slightly lower than the previous es
mate @28#. In Fig. 27 we show integrated autocorrelatio
times for several quantities at this coupling, using bothe
50 and 1/4 in solution-B simulations. In thee50 case, all
clusters were constructed in each MCS. We again note
nificant shorter autocorrelation times in the nondeterminis
simulation (e51/4). However, the deterministic simulatio
is significantly faster. One deterministic MCS ate50 typi-
cally only requires'50% of the CPU time of a generi
solution-B MCS at e51/4. The net gain in simulation effi
ciency withe.0 is therefore only marginal in this case. A
our results are consistent withz50, although withe50 the
convergence to a size-independent behavior is rather s
We have not carried out PIM simulations of this system.

Next we consider the 3D Heisenberg model, which und
goes a phase transition to an antiferromagnetic state
nonzero temperature@52#. According to recent SSE simula
tions, using systems withN5L3 sites andL up to 16, the
critical temperatureTc /J50.94660.001@53#. These simula-
tions were carried out using only local updates. With t
operator-loop update, much larger systems can be stud
We have carried out simulations forL up to 48 close to the
critical temperature. Based on the results, we believe thaTc
is at the low end of the previous estimate, likely very close
0.944. Figure 28 shows autocorrelation times for the st
gered susceptibility and the spin stiffness atT/J50.944, ob-
tained using the deterministic SSE algorithm withe50 ~con-
structing all clusters during each MCS! and solutionB with
e51/4. Here thee50 results are initially consistent with
dynamic exponentz'0.25, but for the largest sizes the
seems to be a change in behavior, possibly a converge
corresponding toz50. Thee51/4 simulation is fully con-
sistent withz50.

y
FIG. 27. SSE autocorrelation times for the staggered and

form susceptibility of the Heisenberg bilayer close to its quant
critical point (J' /J52.5225 was used!. The inverse temperature
b5L/J.
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VI. LOW-FIELD MAGNETIZATION OF THE 2D
HEISENBERG MODEL

As an example of an application made possible with
lution B of the directed-loop equations, we here present S
simulation results for the 2D Heisenberg model in a we
magnetic field. At very low temperatures, the field depe
dence of the magnetization exhibits a step structure du
the gaps between the lowest-energy states with magne
tion mz50,61,62, . . . ,6N/2. These gaps can be extract
from the calculated magnetization curve. For the isotro
Heisenberg model, the gaps are exactly the gaps betwee
degenerate spin multiplets with total spinS50,1, . . . in the
absence of the field.

In an antiferromagnetically ordered system, such as
2D Heisenberg model, the energies of theS.0 multiplets
relative to theS50 ground state should correspond to t
excitations of a quantum rotor whenS!AN. The overall
energy scale can be related to the uniform~transverse! mag-
netic susceptibility@54#:

E~S!5
S~S11!

2L2x'

, ~51!

where L25N. The asymptotic validity of this relation ha
been verified using quantum Monte Carlo estimates for sm
S and L up to 16 @55,56#. Recently, a slow convergence o
the spectrum forS;L has been pointed out for the 2
Heisenberg model with spin 1/2@56#. A systematic study of
EL(S) for systems larger thanL516 was not possible, how
ever, because of the large statistical errors in the energy
ferences.

With the directed-loop algorithm we can instead extr
the energy gaps using the field dependence of the mag
zation. As we have shown in Sec. V, the new solutionB
shortens the autocorrelation times very significantly for l
fields, which is what we need in order to accurately extr
the energy levels forS ranging from 0 to;L. We will

FIG. 28. Autocorrelation times for the staggered susceptibi
and the spin stiffness of the 3D Heisenberg model close to its c
cal temperature (T/J50.944 was used!. The lines correspond to
scaling;L1/4.
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present our complete results of such calculations elsewh
Here we will demonstrate the power of the new method
focusing on the first few levels for system sizesL up to 64,
i.e., the number of spins is 16 times larger than in the pre
ous studies@55,56#.

In order to see the step structure needed to extract
energy levelsEL(S) for small S, the temperature has to b
below theS51 gap, which according to Eq.~51! and previ-
ous estimates of the susceptibility (x''0.065/J) is
'0.004/J for L564. In practice, we have used inverse te
peraturesb corresponding to roughly~1/10!th of the gap. We
have fitted the numerical results to a magnetization cu
^mz& calculated using energy levels of the form

EL~S,mz!5EL~S!2hmz , mz50,61, . . . ,6S,
~52!

at the same temperature as in the simulations. We adjus
energiesEL(S) to give the best match between the calcula
and theoretical magnetization curves. Figure 29 shows
sults for L564 at b52048 and 4096. We used the sam
fitted levelsEL(S) at both temperatures~clearly, theS51
level completely dominates theb54096 results, which in-
clude only the first magnetization step!. As in Ref. @56#, we
define a spin- and size-dependent susceptibility using the
ergy levelsEL(S) obtained in this fitting procedure,

1

2xL,S
5

L2EL~S!

S~S11!
, ~53!

and extrapolate data for fixedS to infinite size in order to
determine the thermodynamic susceptibilityx' . Figure 30
shows our results forS51,2,3 and system sizes ranging fro
L58 to L564. The results up toL516 agree very well with
those presented previously@56#, but our statistical errors are
considerably smaller. The collapse of the three curves o
each other for large systems demonstrate the validity of
~51! for small S. Extrapolating the three datasets to infini

y
i- FIG. 29. Total magnetization vs external field in the 2D Heise
berg model withL564 at two inverse temperatures. The curv
were calculated using four fitted energiesEL(S) ~the same for both
curves!.
1-24
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QUANTUM MONTE CARLO WITH DIRECTED LOOPS PHYSICAL REVIEW E66, 046701 ~2002!
size gives the susceptibilityx'50.065960.0002, again in
good agreement with Ref.@56# but with a considerably re
duced statistical error.

For the L564 simulations atb54096, the CPU time
needed to perform one MCS is'30 s on an Intel Pentium III
running at 866 Mhz. The results shown in Fig. 29 are ba
on (3 –8)3104 MCS for each data point.

VII. SUMMARY AND DISCUSSION

We have introduced the concept of directed loops in s
chastic series expansion and path-integral quantum M
Carlo and implemented them for simulations of the S51/2
XXZ model in an external magnetic field. The directional
of the loop reflects the asymmetry between the operatio
flipping the spins along the loop and the reverse operatio
flipping back those spins. Such an asymmetry is not pre
in the standard world-line loop algorithm@4,16,49#, which as
a consequence is restricted to certain regions of the pa
eter space. Quite generally, there is a hierarchy of th
classes of directed loops. In the most general case the
can backtrack during construction. In some regions of
parameter space the backtracking can be excluded, an
some further restricted regions the loops become symm
~nondirectional! and reduce to the type of loops previous
considered for world-line@4,15,17# and SSE@18# simula-
tions. Hence, the directed-loop framework constitutes a n
ral generalization of the loop-cluster concept@16#. We have
shown that the transitions between the different levels of
hierarchy can be made smooth by minimizing the probabi
of backtracking when solving the directed-loop equatio
We have also demonstrated that the algorithm based on
solution works very well in the full parameter space of t
XXZ model.

Our scheme appears to be much more efficient than
worm algorithm for continuous-time path-integral simul
tions @3#, which also is applicable in the full parameter spa
but does not exhibit the three-level hierarchy of the direc
loops~at least not in its current formulation!. The configura-
tion space involving two moving discontinuities was fir

FIG. 30. Inverse susceptibility extracted using the energies
the S51, 2, and 3 multiplets. The curves are quadratic fits.
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introduced in the worm algorithm, where they enabled c
culations of off-diagonal correlation functions~Green’s func-
tions!. It was also the first method that was practically use
in the presence of external fields. It is, however, not
presence of the discontinuities that makes the worm a
rithm and directed-loop algorithm applicable in the presen
of external fields. One can also think of the construction
the standard world-line loops@16,49# in terms of moving
discontinuities, but they are more constrained in their mot
and therefore cannot take external fields into account. He
it is the rules for moving the discontinuities that determi
whether or not a simulation is efficient. The directed-lo
equations constitute a framework for optimizing these rul
Below we will comment on the similarities and differenc
between worms and directed loops.

The operator-loop update previously constructed for S
simulations@18# corresponds to a particular solution~A! of
the directed-loop equations. We have here constructed a
ferent solution (B), which minimizes the probability of
backtracking in the loop construction and therefore is m
efficient. The new solutionB completely eliminates back
tracking~bounce processes! in theXXZ model forz anisotro-
pies 21,D,1 up to a finite external fieldh ~up to the
saturation field forD50 and only exactly ath50 for uDu
51). In other interesting parameter regions the bounce pr
ability is typically a few percent or less. Our simulation r
sults show that the new solution can decrease the autoc
lation times by up to an order of magnitude or more in ca
where solutionA is the least efficient~at weak and interme-
diate magnetic fields and anisotropies!. The algorithmic dis-
continuity of the previous approach~which amounted to us-
ing a very efficient deterministic algorithm ath50 and the
much less efficient generic solutionA for h.0) is hence
avoided with solutionB, where the bounce probabilities an
the autocorrelation times smoothly connect to those of
deterministic algorithm. However, our results also indica
that the deterministic loop construction ath50 is not always
the most efficient. With a nondeterministic solution~solution
B with the constante.0 in the bond operator! the operator
paths becomes more random, which has a favorable effec
the autocorrelations.

In addition to being more efficient in terms of the aut
correlation times measured in units of our defined MCS,
lution B is also typically faster as the number of operatio
required to perform 1 MCS is smaller~because of the smalle
bounce probability!. In terms of ease of implementation, s
lution A is more straightforward as it is directly given i
terms of matrix elements of bond operators. In order
implement solutionB for a new Hamiltonian, one first has t
investigate the subclasses of vertices with their directed-l
segments and then minimize the bounce probabilities for
nonequivalent classes. SSE with solutionA ~and other spe-
cial solutions for Heisenberg andXY models! have already
been used for a number of different lattices and Hamiltoni
@26–29,32–40#, but so far we have only investigated sol
tion B for theXXZ model discussed in this paper. We expe
generalizations to a wide range of other models to be r
tively straightforward.

f
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In the continuous-time path integral, solutionB of the
directed-loop equations for zero field anduDu<1 results in
an algorithm identical to the standard world-line loop alg
rithm @4,49#. The generic algorithm, which includes a pro
ability of back tracking as the loop is constructed, has so
features in common with the worm algorithm@3#. The ex-
tended configuration space with an open world-line segm
~the worm! is the same in the two methods~and is analogous
also in the SSE operator-loop construction, although the
resentation there is discrete rather than continuous!. How-
ever, there are important differences in the actual proce
used to propagate the path~or worm!. In the worm algorithm
the ‘‘jump’’ and ‘‘reconnection’’ procedures involve the cre
ation or annihilation of a kink, in which one of the worm
ends jumps from one site to another and spins are flippe
finite equal-length segments of imaginary time at both
initial and final sites@3#. The location in time of the worm
end does not change in these processes, but is accompl
in separate updates. In the PIM directed-loop scheme,
movement in imaginary time and the creation~or annihila-
tion! of a kink is combined, and in each step spins are flipp
on a finite segment of imaginary time at a single site on
This dynamics follows naturally from the vertex represen
tion introduced for the SSE operator-loop algorithm@18#,
where a single spin is flipped on a link connecting two v
tices and the possible sites~the same or a specific neighbo
site! and direction~forward or backward! for the next step
are dictated by the four legs of the vertex. Here we ha
directly translated this dynamics into the path-integral sim
lation by borrowing ides from the continuous-time loop a
gorithm@4#. The simulation dynamics is hence different fro
the worm algorithm, and the worm algorithm does not c
respond to a solution of the directed-loop equations. O
autocorrelation results show that the directed-loop schem
much more efficient than the worms in simulations of t
Heisenberg chain in a magnetic field, for which our me
sured autocorrelation times for small systems are almost
orders of magnitude smaller than those reported for
worm algorithm@41#. We expect the superior performance
the directed-loop scheme to be quite general, as the bo
minimization achieved with solutionB has no counterpart in
the worm algorithm~although it may be possible to develo
a generalization!. There are, however, very interesting a
pects of the worm scheme which could also perhaps be
corporated for the directed loops, e.g., the space-time po
tial introduced in order to more efficiently measure Gree
functions at long distances@3#.

Comparing implementations of the directed loops with
the SSE and PIM representations, one difference is tha
the former there is an adjustable parametere ~a constant
added to the bond Hamiltonian operators! which is not
present in the latter. We have noted that a nonzeroe has
generally favorable effects on the autocorrelations in
SSE, but a large value is not practical since the computa
time also increases withe. In some sense, the PIM corre
sponds to SSE withe→`, and one might therefore expe
the PIM implementation to be more efficient. However,
practice, the opposite is often true since already a smalle in
the SSE can give autocorrelation times close to thee→`
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limit, and the computation time for 1 MCS can be signi
cantly shorter in SSE. PIM algorithms should be more e
cient in cases where the diagonal part of the Hamilton
dominates in the internal energy, as the PIM configuratio
~which do not contain diagonal operators! then are smaller
than the corresponding SSE configurations@47#. Another im-
portant aspect is the ease of implementation and optimiza
of the simulations for various models. We have found t
discrete nature of the SSE configuration space, where
vertices locally contain all information needed to constru
the loops, to be a distinct advantage in this respect.

An interesting question is whether the directed-loop a
proach could be used to further extend the applicability
the meron concept@21# for solving sign problems. We hav
shown that for theXXZ model, backtracking in the loop
construction can be avoided in a larger region of the para
eter space than where the loop algorithms previously u
for studying merons are applicable~specifically, at nonzero
external fields inXY-anisotropic systems!. The possibility of
generalizing the meron concept to the whole nonbacktra
ing region should be investigated.
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APPENDIX: PROGRAM IMPLEMENTATION OF THE SSE
METHOD

The computer implementation of a simulation method c
of course be done in several different ways and is an is
more technical in nature than the mathematical definition
the underlying algorithm. Nevertheless, for the benefit
readers wishing to quickly construct a simple but efficie
simulation program, we here briefly outline the basic aspe
of our implementation of the SSE algorithm with th
operator-loop update. Some programs are also available
line @57#.

We first introduce the main data structures used to s
the SSE configuration in computer memory. The stateua& is
stored as spin@s#561 representing the up and down spins
the sitess (s51, . . . ,N). The operator-index sequenceSM
can be packed into an array sm@ j # ( j 50, . . . ,M21), with
sm@ j #52b and sm@ j #52b11 (b51, . . . ,Nb) correspond-
ing to diagonal and off-diagonal bond-b operators, respec
tively, and sm@ j #50 representing fill-in unit operators. Th
lattice geometry can be coded into a list of sitesi (b), j (b)
connected by the bondsb, i.e., site@1,b#5 i (b), site@2,b#
5 j (b). The linked vertices are stored in the form of tw
lists, one containing the links and one the vertex types. T
vertex types vtx@p#51, . . . ,6 (p50, . . . ,n21) correspond
1-26
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QUANTUM MONTE CARLO WITH DIRECTED LOOPS PHYSICAL REVIEW E66, 046701 ~2002!
to the six vertices shown in Fig. 1. The links link@ j # ( j
50, . . . ,4n21) are arranged such that link@4p1 i # (p
50, . . . ,n21, i 50,1,2,3) contains the link~which is an in-
teger referring to another element in link@ # ! for leg i 11 of
vertex p @the leg numbers 1,2,3,4 are defined in Eq.~19!#.
The double-linked nature of the list implies that if link@a#
5b then link@b#5a.

The diagonal update is straightforward: Forj 50, . . . ,M
21, a bondb is generated at random for each sm@ j #50,
which is changed to sm@ j #52b with the probability~14!. If
the change is made, the number of bond operators pre
increases by 1, i.e.,n→n11. For each diagonal elemen
i.e., sm@ j #.0 and even, the change to sm@ j #50 andn→n
21 is carried out with the probability~15!, where b
5sm@ j #/2. If sm@ j # is an odd integer, it corresponds to a
off-diagonal operator at bondb5sm@ j #/2 and the corre-
sponding spin states should propagate, i.e., fora51,2,
spin†site@a,b#‡→2spin†site@a,b#‡.

To understand the implementation of the linked ver
list, it is useful to keep in mind Fig. 2 and the numbering
the vertex legs exemplified in Eq.~19!. In order to construct
the lists link@ # and vtx@ #, two temporary arrays first@s# and
last@s# (s51, . . . ,N) are needed. The element first@s# will
contain the first vertex leg on sites, i.e., first@s#54p1 i (p
50, . . . ,n21, i 50, . . . ,3)means that the first operator ac
ing on sites is thepth bond operator in sm@ # and the vertex
leg acting on the site isl 5 i 11 ~wherel will always be 1 or
2, as these are the legs before the operator has acted!. In an
analogous way, last@s#54p1 i refers to the last operator ac
ing on sites ~wherel 5 i 11 now will always be 3 or 4, since
these are the legs after the operator has acted!. All elements
are initialized to first@s#5 last@s#521 before the construc
tion of the linked list starts. Whereas first@s# will be set at
most once~never if no operator acts on sites), last@s# can be
updated several times as the operator list sm@ j # is searched
from j 50 to M21. For each sm@ j #Þ0, a counterp of the
number ~minus 1! of bond operators encountered is incr
mented by 1 and the bondb5sm@ j #/2 is extracted, giving
also the corresponding sitess05site@1,b# and s1
5site@2,b#. Links can be set whenever these sites have
ready been encountered, i.e., fora50,1, if last(sa)Þ21,
link@4p1a#5 last@sa# and link†last@sa#‡54p1a. The last
occurrence is updated to last@sa#54p1a12. If, on the
other hand, last(sa)521, only the last and first occurrence
are recorded, i.e., last@sa#54p1a12 and first@sa#54p
1a. The spin list spin@ # is propagated whenever off
diagonal operators are encountered, so that the vertex t
vtx@p# can be recorded~using a map from four leg states t
the integers 1, . . . ,6). After the whole list sm@ # has been
traversed, the list of first occurrences is used in order
connect the links across the propagation boundary, i.e.,
each s for which last@s#Þ21, link†last@s#‡5first@s# and
link†first@s#‡5 last@s#.

The loop update is repeatedNl times. Each loop starts a
a random positionj 0P$0, . . . ,4n21% in the list link@ #. We
will move in link@ # and the current position will be referre
to asj. We hence begin atj 5 j 0 and keepj 0 in order to check
at each stage whether the loop has closed or not. The cu
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position corresponds to the vertex numberp5 j /4 and the leg
index is l i5mod(j,4) ~we can now for convenience numbe
the legs 0, . . . ,3). This is the entrance leg, and the verte
type is vtx@p#. The exit probabilities given the entrance le
depend on the vertex type and should be stored in a pre
erated table. The probabilities correspond to the particu
solution of the directed-loop equations used. It is conveni
to use a list of cumulative exit probabilities instead of t
individual probabilities, so that for a given entrance legl i the
exit leg can be obtained by successively comparing the
mulative probabilities prob(l e ,l i ,vtx@p#) for exiting at leg
l e50, . . . ,3 with a random number in the range@0,1#. A
corresponding list with updated vertex types is also stor
so that after the exit leg has been fixed the vertex is upda
as vtx(p)→newvtx@ l e ,l i ,vtx@p##. After this, the current po-
sition in link@ # is changed to that corresponding to the e
leg, i.e.,j→4p1 l e . The loop closes at this stage ifj 5 j 0. If
it does not close, we move to the leg linked toj, i.e., j
→ link@ j #. The loop closes also at this stage ifj 5 j 0. The
two different types of closings, from within the same vert
or from a different vertex, are illustrated in Fig. 4. The po
sibility of aborting loop updates that become excessiv
long can be simply taken into account by exiting the lo
update routine without mapping the already accomplish
changes in the vertex list vtx@ # back into a new operator lis
sm@ # and state spin@ #. For theXXZ model the loops typically
do not become excessively long in practice however, as
demonstrated in a few examples in Sec. V.

After all the Nl loops have been constructed, the upda
vertex list vtx@ # is mapped onto the corresponding new o
erator list sm@ #. The bond indices do not change, and the
fore one can simply cycle through the positionsj
50, . . . ,M21 in the old list one by one, and for each no
zero occurrence, extract the bondb5sm@ j #/2 and increment
an operator counterp→p11 ~the corresponding position in
the vertex list vtx!. The operator type, diagonal, or off
diagonal can be coded in a list optype@v#50,1, wherev
51, . . . ,6 is thevertex type and 0,1 correspond to diagon
and off-diagonal, respectively. The updated operator elem
is then sm@ j #52b1optype†vtx@p#‡. The spin list spin@ # is
updated using the list of first occurrences that was gener
during the construction of the linked list. For each sites, if
first@s#521 no operator acts on that site and the spin can
flipped, spin@s#→2spin@s#, with probability 1/2. Other-
wise, the updated spin state is obtained by extracting
vertex numberp5first@s#/4 and the legl 5mod(first@s#,4)
corresponding to the site in question. The corresponding s
state can be stored as a pregenerated map, so that sp@s#
→ legspin†l ,vtx@p#‡.

We have now described all the basic procedures invol
in carrying out 1 MCS using the general operator-loop u
date. In the special ‘‘deterministic’’ cases, where the exit
is given uniquely by the entrance leg, a number of rat
self-evident and trivial simplifications are possible~see dis-
cussion in Sec. II D!.

The expansion cutoffM is adjusted during equilibration o
the simulation by keeping it ata3nmax, wherenmax is the
largestn reached so far in the simulation and a suitable va
1-27
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for the factor isa'1.25. The number of loopsNl is also
adjusted during equilibration, to keep the average total nu
ber of vertices visited in 1 MCS close to some reasona
number, e.g., 2̂n&, as discussed in Sec. II B. We will no
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discuss the procedures for measuring operator expecta
values here, but published forms for several types of esti
tors @2,42,44# can be easily translated into the data structu
used above.
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